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Abstract. We consider the estimation of the Fourier trans-
form of continuous-time signals from a nite setN of discrete-
time nonuniform observations. We introduce a class of an-
tithetical strati ed random sampling schemes and we obtain
the performance of the corresponding estimates. For func-
tions f(t) with two continuous derivatives, we show that the
rate of mean square convergence is 1/N5, which is consid-
erably faster that the rate of 1/N3 for strati ed sampling and
the rate of 1/N for standardMonte Carlo integration. In addi-
tion, we establish joint asymptotic normality for the real and
imaginary parts of the estimate. The theoretical results are
illustrated by examples for lowpass and highpass signals.
Keywords Fourier transforms estimates, non-uniform sam-
pling, rates of mean-square convergence, asymptotic normal-
ity.

1. INTRODUCTION

In this paper we establish the statistical properties of discrete-
time estimates of the Fourier transform of deterministic func-
tions using antithetical random sampling schemes. Standard
Monte Carlo integration was considered in [12] and regu-
lar strati ed sampling was considered in [9]. It was shown
in [9] that regular strati ed sampling for functions with one
continuous derivative, the rate of mean-square convergence is
1/N3. In this paper we employ antithetical sampling schemes
based on 2N sampling points and show that the rate of mean-
square convergence is 1/N5 for functions with two contin-
uous derivatives. In addition, we establish joint asymptotic
normality for the estimates and determine the explicit expres-
sion for the asymptotic covariance matrix. This result could
be used to obtain con dence intervals for the estimates. The
notion of antithetical sampling is due to Haber [7]. Related
work for integrals of random processes can be found in [6].
The relationship of random sampling schemes to the notion
of alias-free sampling is thoroughly discussed in [9]. There
has been extensive works in the engineering literature on the
subject of randomized sampling [3] as a method for digital
alias-free signal processing (DASP), which was developed by

Bilinskis [3] [4] [5] and investigated by other researchers, in
particular [11] [2] [12]. The reader is directed to these works
for further details.
The organization of the paper is as follows: In Section II,
we consider the mean-square estimation error for a class of
antithetical strati ed sampling schemes. We show that these
estimates outperform regular strati ed sampling for any f(t),
anyN , and any frequency λ. We further show that if f(t) has
a continuous second-oder derivative, then the rate of mean-
square convergence is 1/N5. We provide exact expressions
for the bias and variance. We further optimize over the class
of sampling schemes in order to obtain the best performance.
In Section III we establish the joint asymptotic normality of
the real and imaginary parts of the estimates for large sample
size N . In Section IV we provide numerical results for both
low-pass and high-pass signals. Proofs of all the theorems
stated in this paper can be found in the full paper [10].

2. A CLASS OF ANTITHETICAL SAMPLING
SCHEMES

Consider real-valued functions f(t) with nite energy. The
Fourier transform of f(t) is given by

F (λ) :=
∫ ∞
−∞

e−itλf(t)dt.

If f(t) is observed over the interval [0, T ], andw(t) is an aver-
aging window, one would like to obtain the Fourier transform

Fw(λ) :=
∫ T

0

e−itλf(t)w(t)dt. (2.1)

The properties of different windows can be found in [1]. The
integral in (2.1) can be approximated by the sum

F̂w(λ) :=
N∑

j=1

e−itjλf(tj)w(tj)Δj (2.2)

where tj are the sampling points and Δj = tj − tj−1. Note
that (2.2) is an estimate of Fw(λ), not of F (λ). We now intro-
duce our sampling scheme and the corresponding estimates.
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The estimate is based on 2N random samples of the function,
obtained as follows: Let 0 = τN,0 < τN,1 < . . . < τN,N = T
be a partition of the observation interval [0, T ], de ned by a
continuous, strictly positive, probability density function h(t)
on [0, T ] such that∫ τN,j

0

h(t)dt =
j

N
, j = 0, 1, . . . , N. (2.3)

For j = 1, . . . , N , set

AN,j := [τN,j−1, τN,j), ΔτN,j := τN,j − τN,j−1. (2.4)

Note that h(t) = 1/T on [0, T ] yields an equally spaced parti-
tion of the interval [0, T ] (in which case τN,j = j (T/N) and
ΔτN,j = T/N ). We shall demonstrate later that the quality
of the estimate can be signi cantly improved by selecting an
optimal design density h(t). The sampling points {tN,j}Nj=1

are selected in the following manner: The random variables
{tN,j} are independent such that tN,j is uniformly distributed
on the subintervalAN,j . Denote the point antithetical to tN,j

by t′N,j:
t′N,j := 2cN,j − tN,j (2.5)

where cN,j is the midpoint of the subintervalAN,j ,

cN,j :=
τN,j + τN,j−1

2
j = 1, . . . , N. (2.6)

For simplicity of analysis, we de ne

g(t) := e−itλf(t)w(t). (2.7)

The estimate of the Fourier transform is then given by

F̂w(λ) :=
N∑

j=1

(
g(tN,j) + g(t′N,j)

2

)
ΔτN,j . (2.8)

Note that in the case of an equally spaced partition, h(t) =
1/T on [0, T ],

F̂w(λ) =
T

N

N∑
j=1

(
g(tN,j) + g(t′N,j)

2

)
.

Our rst result shows that the estimate (2.8) is unbiased and
we obtain an expression for its variance for everyN ≥ 1.

Theorem 1 i. E[F̂w(λ)] = Fw(λ).

ii. Var
[
F̂w(λ)

]

=
N∑

j=1

(
ΔτN,j

2

∫
AN,j

[
|f(t)w(t)|2

+ cos((2t− 2cN,j)λ)f(t)w(t)

× f(2cN,j − t)w(2cN,j − t)
]
dt

−
∣∣∣∣∣
∫
AN,j

e−itλf(t)w(t)dt

∣∣∣∣∣
2 )
. (2.9)

We will show later that the variance (2.9) is always upper
bounded by the variance of the regular strati ed random sam-
pling estimate considered in [9] for the same value ofN . We
now determine the exact rate of decay of the variance.

Theorem 2 Assume that the function f(t)w(t) has a contin-
uous second-order derivative. Then, the antithetical strati ed
random sampling estimator (2.8) satis es

limN→∞(2N)5 Var
[
F̂w(λ)

]
= C2(h, λ)

where

C2(h, λ) :=
2
45

∫ T

0

{ 1
h5(t)

[
(fw)′′(t)− λ2(fw)(t)

]2
+ 4λ2[(fw)′(t)]2

}
dt. (2.10)

Since the estimate (2.8) is unbiased as shown in Theorem 1,
we have the following corollary.

Corollary 1 Under the assumptions of the above theorem,
the mean-square error of the antithetical random sampling
estimator (2.8) satis es

limN→∞(2N)5E
∣∣∣F̂w(λ)− Fw(λ)

∣∣∣2 = C2(h, λ)

where C2(h, λ) is given by (2.10).

We remark that the variance of the estimate given above is
a function of the frequency λ. One may be interested in its
global behavior: Let Q(λ) be a nonnegative weight function
satisfying∫ ∞
−∞

Q(λ)dλ = 1, r4 :=
∫ ∞
−∞

λ4Q(λ)dλ <∞. (2.11)

Let
r2 :=

∫ ∞
−∞

λ2Q(λ)dλ.

Consider the weighted integrated mean-square error (IMSE)

IMSE(N, h) :=
∫ ∞
−∞

Q(λ)E
[∣∣∣F̂w(λ)− Fw(λ)

∣∣∣2] dλ.
We have,

Theorem 3 Assume that the function f(t)w(t) has continu-
ous second order derivatives. Then the antithetical strati ed
random sampling estimator (2.8) satis es

limN→∞(2N)5IMSE(N, h) = C2
av(h) (2.12)

where

C2
av(h) :=

2
45

∫ T

0

{
s2(t)
h5(t)

}
dt. (2.13)

with s2(t) given by

s2(t) := [(fw)′′(t)]2 − 2r2{(fw)(t)(fw)′′(t)− 2[(fw)′(t)]2}
+ r4(fw)2(t). (2.14)
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The above results have the following implications:

1. The rate of mean square convergence of the antitheti-
cal random sampling estimator (2.8) is precisely 1/N5

for functions that have two continuous derivatives. The
rate is valid for all design densities h(t). In particular,
it holds for an equally-spaced partition h(t) = 1/T on
[0, T ]. The approximation

E
∣∣∣F̂w(λ)− Fw(λ)

∣∣∣2 � C2(h, λ)
(2N)5

(2.15)

holds for moderate values of N . This is supported by
numerical results in the Section IV.

2. The asymptotic constantC2(h, λ) of (2.10) depends on
the frequency λ (the rate of convergence is 1/N5 for
each xed frequency).

3. We now optimize over the density h(t) to minimize the
constant C2(h, λ) (we get a different optimal design
density for each frequency λ) or minimize the global
asymptotic constant C2

av(h) for all frequencies. The
optimal density h(t) that minimizes C2(h, λ) for each
xed frequency λ, is given by

h∗(t, λ) =
|g′′(t, λ)| 13∫ T

0
|g′′(x, λ)| 13 dx

, t ∈ [0, T ] (2.16)

where

|g′′(t, λ)| = {
[(fw)′′(t)− λ2(fw)(t)]2

+ 4λ2[(fw)′(t)]2
}1/2

. (2.17)

Similarly the global optimal design density h∗av(t) is
given by

h∗av(t) =
|s(t)| 13∫ T

0
|s(x)| 13 dx

, t ∈ [0, T ] (2.18)

where s2(t) is given by (2.14).

4. The smallest asymptotic constants while using the op-
timal design density h∗(t, λ) or h∗av(t) are given by

(C2)∗(λ) =
2
45

(∫ T

0

|g′′(t, λ)| 13 dt
)6

(C2
av)
∗ =

2
45

(∫ T

0

|s(t)| 13 dt
)6

. (2.19)

Note that the optimal design density h∗(t, λ) requires
the knowledge of the underlying function f(t). If f(t)
is unknown, one can choose equally spaced partitions
(uniform h(t)). Also note that the rate of mean-square
convergence (Theorem 2) of the estimate is the same
regardless of whether one uses the optimal design den-
sity, or the uniform design density; only the asymptotic
constant C2(h, λ) is different.

5. The use of asymptotically optimal design can signi -
cantly reduce the value of the mean-square estimation
error. Compared to a uniform sampling h(t) = 1/T ,
the improvement is given by the ratio of the asymptotic
constants:

R(λ) :=
(C2)∗(λ)

(C2)(h = 1
T , λ)

=

(∫ T

0 |g′′(t, λ)|
1
3 dt

)6

T 5
∫ T

0 |g′′(t, λ)|2dt
.

(2.20)
This will be illustrated in the Section IV. Similar con-
clusions hold when comparing the global constants
(C2

av)
∗ and (C2

av)(h = 1/T ) which do not depend on
λ.

6. Comparing the performance of regular strati ed sam-
pling with antithetical strati ed sampling. Both esti-
mates are unbiased and hence we compare their vari-
ances. Assume a uniform partition of [0, T ]. Then for
the same value ofN , we have

Var
[
F̂w(λ)

]
anti.

≤ Var
[
F̂w(λ)

]
reg.

(2.21)

for any f(t)w(t), N and λ.

3. JOINT ASYMPTOTIC NORMALITY

We have the following result establishing the joint asymptotic
normality of the real and imaginary parts of the estimate (2.8)
and provide an explicit expression for the covariance matrix
of the asymptotic distribution.

Theorem 4 Assume that the function f(t)w(t) has a continu-
ous second-order derivative. Then, the scaled real and imag-
inary parts of the antithetical strati ed estimator (2.8)

N5/2�
[
F̂w(λ) − Fw(λ)

]
, N5/2�

[
F̂w(λ) − Fw(λ)

]
are jointly asymptotically normal with zero means and covari-
ance matrix speci ed in [10].

4. NUMERICAL RESULTS

In this section we provide numerical results illustrating the
analytical performance established in the previous sections.
Because of space limitation, we summarize the conclusions
drawn from the ten plots rather than displaying the plots them-
selves.
For our rst example, we select a lowpass signal and we carry
all computations analytically. Let

f(t) =
α3

2
t2e−αt; t ≥ 0, α > 0. (4.1)

This function has two continuous derivatives on (0,∞)which
is square integrable. We set α = 1 and select T = 8 for
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which Fw(λ) is fairly close to F (λ) with w(t) = 1. We start
with a uniform partition h(t) = 1/T over [0, T ]. The exact
variance of the strati ed estimator is given by Theorem 1 with
ΔτN,j = T/N . We compare this exact expression of the vari-
ance of the estimator with the asymptotic expression given by
(2.15). The plots show that for moderate values of N ≥ 15
the exact and asymptotic expressions for the mean-square er-
ror of the antithetical estimator (2.8) are very close. We also
compare the exact variance of the antithetical estimator and
the regular strati ed estimator for λ = 1 when both estima-
tors use the same N . The antithetical estimator outperforms
the regular strati ed estimator by two orders of magnitude for
N ≥ 15.
In the previous numerical results, we assumed that the design
density is uniform over [0, T ]. We now obtain the optimal
design density of the antithetical estimator for each xed fre-
quency. The plot shows that these optimal densities are quite
different from a uniform density over [0, T ]. Further, that for
each N , the partition intervals {AN,j}Nj=1 tend to cluster to-
ward the left end of the interval [0, T ]. Finally we consider
the improvement that is expected when using optimal design
densities over a uniform design density on the basis of the
asymptotic expressions given in Theorem 2. The optimal de-
sign provides signi cant improvement over uniform design
for every value of γ := αT > 0 and that this improvement
increases with γ (about two orders of magnitude for large γ).
The improvement factor is largest for λ = 0 and smaller for
λ > 0.
Next we consider high frequency signals and compare the

performance of the antithetical estimator with that of regular
strati ed estimate. Let F (λ) be given by

F (λ) =
{

1, |λ± λ0| ≤ B
0, otherwise (4.2)

where λ0 is the center frequency andB is the one-sided band-
width. The corresponding function f(t) is given by

f(t) =
2B
π

sinBt
Bt

cosλ0t. (4.3)

This signal is in nitely differentiable. We select the center
frequency λ0 = 109 rad/sec and the one-sided bandwidth B
to be half a percent of λ0, B = 0.5 × 107 rad/sec. Note
that the envelope function sin(Bt)/(Bt) has its rst zero at
π/B so we select T = 2(π/B) = 4π × 10−7sec in order to
capture most of the energy of the signal. We select the win-
dow function w(t) = 0.5(1 + cos(πt/T )) corresponding to
the Hann windowwhich yields a smoothFw(λ) fairly close to
F (λ). For both the antithetical sampling and regular strati ed
estimators we select equally-spaced partition (h(t) = 1/T )
and the sampling point tN,j is uniformly distributed over the
subinterval AN,j . The plots show that the antithetical sam-
pling estimator outperforms the regular strati ed estimator for
all frequencies displayed in the plots.
The numerical results of this section are consistent with

the analytical observations made in Section II.
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