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ABSTRACT

In this paper, we propose a time-domain method for uniform signal
reconstruction from periodic nonuniform samples of a bandlimited
signal when timing-skews are known. The algorithm computes a
constrained least-squares estimate of the input via the pseudoinverse
of a time-varying filter. The method exploits the oversampling in the
system to provide increased performance in the presence of noise.

Index Terms—Converters, Signal sampling, Signal reconstruc-
tion, Estimation

1. INTRODUCTION

It is often possible to sample an analog signal at a higher rate by
allowing nonuniform sampling. Time-interleaved analog-to-digital
converters (TIADCs) are one such high-speed sampling circuit that
can produce periodic nonuniform samples of an input. However,
nonuniform sampling is generally avoided due to the added com-
plexity and error to reconstruct uniform samples. In this paper, we
introduce a method for reconstructing uniform samples from peri-
odic nonuniform samples when the sample timings are known.

In periodic nonuniform sampling, the input is sampled via M
sets of uniformly spaced samples, each set with period MTs. The
spacing between the sets is not uniform but is known. Although input
reconstruction from these samples is nontrivial, signals bandlimited
to π/Ts can be perfectly reconstructed because of an average period
of Ts. This form of sampling is commonly addressed in the area of
TIADCs, where timing between the ADCs may not be uniform.

Methods for reconstruction of uniform samples from nonuni-
form samples have been widely explored [1, 2]. The case of periodic
nonuniform sampling has also been studied in detail since it allows
for practical implementations. In [3], the added structure of the peri-
odic nonuniform sampling is exploited to develop a filterbank which
reconstructs bandlimited inputs perfectly. More computationally ef-
ficient methods for approximate reconstructions are given in [4, 5].

The reconstruction methods also operate in the presence of
noise, which can be introduced through a variety of sources in-
cluding quantization and thermal noise. This noise can seriously
degrade performance when reconstructing uniform samples from
the nonuniform samples [6]. The issue is addressed in the gen-
eral setting [2, 7]; however, it is often cursorily treated in efficient
periodic nonuniform reconstruction. In this paper, we present a
time-domain reconstruction method for the noisy regime.

The paper is formatted as follows. In Section 2, we introduce
the problem formulation. In Section 3, we present our reconstruc-
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Fig. 1. Signal sampled withM = 4 sets of periodic samples. Dotted
lines show uniform samples. Solid lines show nonuniform samples.

tion method, as well as its comparison to the naive reconstruction
method. The simulated performance is given in Section 4.

2. PROBLEM FORMULATION AND SIGNALMODELS

The input signal x(t) is modeled as a deterministic bandlimited sig-
nal with cutoff frequency Ωc, i.e. the continuous time Fourier trans-
form X(jΩ) = 0 for Ωc ≤ |Ω|. The overall sampling period Ts

of the system is chosen to ensure that the sampling rate strictly ex-
ceeds the Nyquist rate, i.e., Ts < π/Ωc, thus creating some amount
of excess bandwidth. The signal recovery problem is to estimate
x[n] = x(nTs), which is bandlimited to ωc = ΩcTs < π.

The M sets of received samples are ordered in time and we
model the signal from the ith set of samples as:

yi[n] = x(nMTs + iTs + τi) + wi[n] (1)

where the τi model the timing skew from the uniform sample lo-
cations. Although timing of the M sets is not uniform, the skews
are treated as a known parameters in our setup. In practice, it may
be necessary to first estimate the skews; a variety of methods have
been developed for doing so [8, 9]. The wi[n] in (1) represent the
sampling noise which can be modeled as white Gaussian noise with
variance σ2. In quantized signals, the noise variance depends on
the number of bits to which the input is quantized. Without loss of
generality, we can choose an arbitrary time reference, thus we let
τ0 = 0. Figure 1 shows an example sampling pattern.

We use the following notation to represent the signal obtained
by multiplexing theM signals

y[n] = yi

»
n− i

M

–
n (mod M) = i. (2)
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We can rewrite y[n] in terms of the uniform samples x[n] as fol-
lows. First we note that since x(t) is bandlimited and the sampling
frequency is higher than the Nyquist frequency, the input can be writ-
ten as

x(t) =
X
m

x[m]sinc(t−mTs). (3)

Second, for n (mod M) = i,

y[n] = x(nTs + τi) + w[n] (4)

=
X
m

x[m]sinc((n−m)Ts + τi) + w[n]. (5)

The received signal can be viewed as the output of a linear time-
varying filter with noise added

y[n] = (fi ∗ x)[n] + w[n] n (mod M) = i (6)

where the fi[n] filters represent the fractional sample delays in (5).
The goal of the reconstruction is to estimate uniform samples of

the input, i.e. x̂[n] = x[n], from the received signal y[n] and timing
skews τi.

3. SIGNAL RECONSTRUCTION

In this section, we develop methods for input signal reconstruction.
The general approach for estimation is to invert the effects of the
time-varying filters in (6) while handling the noise in a careful man-
ner. Typically, the inverse of a time-varying filter is difficult to com-
pute; however, due to the added structure of our formulation, there
exists a closed form solution. In the absence of noise, the input x[n]
can be reconstructed from y[n] through another time-varying filter
gi[n] such that

x[n] = (gi ∗ y)[n] n (mod M) = i. (7)

The filters are explicitly given in [3].
When noise is introduced into the system, the reconstruction

must be modified in order to reduce the effect of the noise on the
estimate. Designing new filters to optimally handle the noise is in-
tractable in the signal domain since it requires the inverse of more
complicated time-varying filters. We switch to a matrix representa-
tion of the system to aid in the development of our reconstruction.

3.1. Matrix Formulation

For convenience, we rewrite our equations in matrix form. Specifi-
cally, we write the received signal (5)

y = Fx + w. (8)

with column vectors y, x, w representing blocks of size N of the
received ADC signal, the ideal uniform input signal, and the noise
signal, respectively. The matrix

Fk,l = sinc((k − l)Ts + τi) i = k (mod M) (9)

where 0 ≤ k, l ≤ N − 1. With the matrix approximation, we have
treated filters (6) as finite length and neglected edge effects, as is
appropriate for larger N . We consider these effects more carefully
during simulation.

We now develop a method for signal reconstruction from noisy
periodic nonuniform samples. We begin by introducing the naive
estimate and then introduce a constrained least-squares formulation
which allows for increased accuracy in the presence of noise.

3.2. Naive Least-Squares Estimation

The least-squares (LS) estimate for the input signal is given by

x̂LS = arg min
x

||y − F(τ )x||2 (10)

where x is bandlimited, a constraint we ignore for the moment. We
explicitly indicate the dependence ofF on the vector of timing skews
τ . Because the noise w is modeled as white Gaussian, the LS esti-
mate is equivalent to the maximum-likelihood (ML) estimate. The
solution is equal to

x̂LS = (FT
F)−1

F
T
y = F

−1
y (11)

since F is invertible when the τi are sufficiently small.
This estimation method is equivalent to the filters in [3]. The

estimate performs well in high SNR situations. However, as noise
power increases, it is clear to see that this estimate is suboptimal. A
better estimate of x can be produced by enforcing the bandlimited
constraint on the estimator x̂. We label this as the filtered least-
squares (FLS) estimator:

x̂FLS = LF
−1

y. (12)

where L is a matrix implementing a lowpass filter bandlimited to
ωc. This naive estimation technique uses a standard nonuniform re-
construction filter to estimate x from y and then lowpass filters the
output to remove any noise in the out-of-band spectrum.

By substituting for y in (12), we find

x̂FLS = LF
−1(Fx + w) (13)

= x + LF
−1

w. (14)

Thus the error term equals eFLS = LF
−1

w.

3.3. Constrained Least-Squares Estimation

Amore accurate estimator results from imposing the bandlimited re-
quirement directly into the least-squares estimation. The constrained
least-squares (CLS) optimization problem is given by

x̂CLS = arg min
x∈S

||y −F(τ )x||2 (15)

where S = {x | x ∈ RN , Lx = x}.
By introducing a secondary variable z, where x = Lz, we can

remove the constraint in the LS formulation

ẑCLS = arg min
z

||y − FLz||2 (16)

x̂CLS = LẑCLS. (17)

First, we must compute ẑCLS. Because the matrixL is singular (high
frequency vectors lie in the nullspace), the product matrixFL is also
singular. Thus it is not possible to take the inverse of this matrix in
order to compute the maximum likelihood estimate ẑCLS. Instead,
we use the pseudoinverse

ẑCLS = (FL)†y (18)

where (·)† denotes the Moore-Penrose pseudoinverse [10]. The
overall solution is given as

x̂CLS = L(FL)†y. (19)
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We now analyze this estimator. The lowpass filter matrix can be
implemented by a frequency sampling filter matrix, i.e.

L = D
−1

ΣLD (20)

where D is the N × N DFT matrix, and ΣL is the frequency re-
sponse of the filter. Since L represents a lowpass filter with cutoff
frequency ωc, this is equivalent to having the (N − k) eigenvalues
which correspond to the low frequency eigenvectors equal to one and
the k eigenvalues which correspond to high frequency eigenvectors
equal to zero, where k = �N(π − ωc)/π�. The N ×N eigenvalue
matrix is given by

ΣL =

»
IN−k 0

0 0

–
. (21)

The nullspace of L corresponds to linear combinations of high fre-
quency vectors.

The pseudoinverse of L is equivalent to inverting all the non-
zero eigenvalues. Because each of these eigenvalues is equal to
one, their inverses are equal to one (and the zero eigenvalues remain
zero). Thus we find that L† = L. Note that without the frequency
sampling approximation (20), the matrix L may have very small
non-zero eigenvalues. When the matrix is inverted, these eigenval-
ues become very large but can be negated with a power constraint on
x̂.

Now, we analyze the properties of the product FL. The singular
value decomposition is given by

FL = UΣF LV
T (22)

where U and V are N ×N orthonormal matrices. It is easy to see
that because F is full rank, the nullspace N (FL) = N (L) and has
rank N − k. ThusΣF L can be decomposed as

ΣF L =

»
ΣS 0

0 0

–
(23)

whereΣS is an (n− k)× (n− k) diagonal matrix.
The bottom k rows of V

T span the high frequency nullspace
of L, and the top rows span the low frequency space. Again, since
(FL)† inverts only the non-zero eigenvalues, we find that

(FL)†FL = VΣLV
T = L (24)

where the second equality holds because the nullspaces of FL and
L are equal and the low frequency subspace has unity eigenval-
ues. This simplification does not imply anything about the product
FL(FL)†. For similar reasons, it is easy to see that L(FL)† =
(FL)†.

From the analysis above, we can better interpret the CLS estima-
tor. First, the received signal is projected into the space of τ -spaced
periodic nonuniform samples of any possible bandlimited signal, i.e.
the space spanned by FL. This produces the intermediate estimate
FL(FL)†y. The nonuniform sampling is then inverted by applying
F
−1. Thus, the noise reduction occurs on the nonuniform samples
before the signal reconstruction.

This approach provides a more efficient method for noise re-
duction than the equivalent frequency-domain techniques for signal
estimation, which are not as easily realizable in hardware. It also
provides insight into optimal methods for treating noise when de-
veloping practical reconstruction filters. Fig. 2 shows a graphical
representation of the operations of the estimators.

SA SB

Fx

FL(FL)†yy
x̂FLS

x̂CLS

x

F−1y

Fig. 2. Graphical representation of the estimator operations. Set SA
represents the convex set of bandlimited signals. Set SB represents
the convex set of signals which can be written as Fs, where s ∈ SA.

To compute the CLS estimator error, we substitute for y in (18)
and find

x̂CLS = L(FL)†(Fx + w) (25)
= x + (FL)†w. (26)

The error term equals eCLS = (FL)†w. In the following sections,
we show the performance improvement of the CLS estimator over
the naive FLS method.

3.4. Analysis of Estimators

In this section, we analyze the bias, variance, and efficiency of the
estimators. From (14) and (26), it is clear that estimators FLS and
CLS are unbiased, i.e., E[x̂] = x. The unbiased property is due to
fact that the expectation of any linear combination of w[n] is zero.

The covariance matrices of the noise are given by

ΛFLS = E[eFLS e
T
FLS] = σ2

L(FT
F)−1

L
T (27)

ΛCLS = E[eCLS e
T
CLS] = σ2(FL)†(FL)†

T
. (28)

From these matrices, we can calculate the average variances

σ2
FLS =

1

N
σ2 tr(L(FT

F)−1
L

T ) (29)

σ2
CLS =

1

N
σ2 tr((FL)†(FL)†

T
). (30)

Because comparing the errors is not analytically tractable, we nu-
merically calculate them in Section 4 and verify that σ2

CLS < σ2
FLS.

An estimator is efficient if its error variance achieves the
Cramer-Rao bound (CRB). In [11], the CRB is redefined for con-
strained parameter estimation problems. For the problem of

x̂LS = arg max
x,g(x)=0

py|x(y|x) (31)

where the g(·) function may contain multiple nonlinear equations,
the constrained CRB bound is given by

Λx̂ ≥ J
−1 − J

−1
G(GT

J
−1

G)−1
G

T
J
−1 (32)

where J = −E
ˆ
∇x ln py|x(y|x) · ∇T

x ln py|x(y|x)
˜
is the Fisher

information matrix andG = ∇xgT (x) is theN×N gradient matrix
of the constraints. In the time interleaved converter setup, the con-
straints enforce that the estimate is bandlimited, g(x) = (I − L)x.
We find J = F

T
F and G = (I − L)T yielding the bound on Λx̂

given in (32). It is clear that the CLS estimate will achieve the CRB
for the constrained ML problem because the constraints are linear.
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Fig. 3. Effective bit increase of estimator CLS over FLS in a 2-ADC
system for varying amounts of skew. Average performance is plotted
for different cutoff frequencies (amounts of oversampling).

4. ANALYSIS AND SIMULATIONS

In this section, we present the performance of the FLS and CLS
estimators in TIADC systems. To do this, we compute the traces of
the covariance matrices of the estimators. As expected, in all cases,
the noise power is lower for the CLS estimator. The results are given
in terms of the increase in effective bits of the CLS estimator over the
FLS estimator (assuming a 6.02 dB increase in SNR corresponds to
one effective bit). The results in Fig. 3 were simulated with a 12-bit
2-ADC system with block lengths of 512 samples. We present the
performance for varying oversampling ratios and timing skew size.

The plot shows that for small amounts of timing skew, the CLS
estimate only provides marginal improvements in effective bits.
However, the benefits of the estimator are more visible for higher
levels of timing skew and oversampling. The effective bit increase
is independent of the starting number of effective bits because the
signal power remains the same. Thus, the 0.1 bit increase obtained
for the 2-ADC system with cutoff ωc = 0.75π (33% oversampling)
and 40% timing skew holds even for low-resolution converters.

Fig. 4 shows performance in a 16-ADC system for tests where
the set of timing skews is chosen at random. The system timing
error is measured by the sum of the magnitudes of the timing skewsP
|τi|/T . In this case, reconstruction for an average timing skew of

∼ 16% yields a 0.1 bit increase in resolution.

5. CONCLUDING REMARKS

Using a least-squares formulation, we presented two methods for re-
constructing the input from the noisy periodic nonuniform samples
when the timing skews are known (or have been estimated). In the
naive FLS approach, we enforce the bandlimited constraint by com-
puting the LS estimate and then lowpass filtering it. By imposing
the bandlimited requirement directly on the least-squares estimate,
the CLS estimate provides an increase in performance.

The CLS method is useful within systems with large timing-
skews and high levels of oversampling. The SNR gain is fixed and
independent of the input SNR. Thus, the performance increase is
most clearly seen in high noise systems (low resolution).

Future research must be conducted to determine the performance
of the estimator when estimates of the timing skew are used. Also for
practical implementation, it is necessary to reduce the complexity to
a level which can be implemented easily in hardware. By combin-
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Fig. 4. Effective bit increase of estimator CLS over FLS in a 16-
ADC system with ωc = 0.75π. System timing skew is measured byP
|τi|/T . Each x on the plot represents a random set of skews.

ing the reconstruction method with a method for skew estimation, it
may be possible to form an efficient method for joint timing-skew
estimation and signal reconstruction in the presence of noise.
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