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ABSTRACT
We present upper bounds on the 2-norm of the aliasing error in mul-
tidimensional Shannon sampling. Our bounds complement the pre-
viously known 1-norm upper bounds for the peak aliasing error. The
proposed bounds provide a good estimate of the total error energy
for any signal, rather than just for certain pathological extremals, as
is the case with the 1-norm bounds which, as a result, tend to be too
conservative for practical applications. The sampling representation
is general, possibly multiband, and not restricted to bandlimited sig-
nals. Error bounds are phrased in terms of the energy of signal com-
ponents that lie outside the assumed band-region. Therefore, they
are easy to interpret and compute as is demonstrated for two prac-
tical signal classes, namely signals with exponential or polynomial
out-of-band decay.

Index Terms— Shannon sampling, aliasing error, multidimen-
sional, nonbandlimited, error energy.

1. INTRODUCTION

The classical Whitaker-Shannon-Kotelnikov sampling theorem has
been extended to multidimensional signals bandlimited on sets in
the n-dimensional Euclidean space [1, 2, 3]. However, in many sig-
nal processing and imaging applications, and in particular in multi-
dimensional (M-D) cases where the signal typically has finite spa-
tial/temporal support, the signal is only approximately bandlimited.
This leads to aliasing error in the sampling series expansion. While
bounds on the aliasing error in the one-dimensional (1-D) case have
been extensively studied during the past three decades (see [3, 4, 5]
and references therein), their extensions to n-dimensions are much
more recent. In particular, Higgins [6] considered the most general
case of a multidimensional passband and derived a uniform (1-norm)
upper bound on the aliasing error.

The Higgins’ result provides upper bounds for the point-wise
peak error, which in most applications is too conservative to be prac-
tical. Therefore, there is great interest in deriving upper bounds that
instead provide a bound on the total energy (or 2-norm) of aliasing
error. The advantage of these bounds is that they are demonstrated
to provide a good estimate of the error for any signal, rather than just
for certain pathological extremals, as is the case with the peak-error
(1-norm) upper bound.

Unfortunately, to date, such bounds do not exist for M-D sam-
pling of nonbandlimited signals. The purpose of this work is to in-
troduce, for the first time, aliasing error energy upper bounds that
hold under relatively weak conditions, apply to nonbandlimited sig-
nals, and only depend on the “out-of-band” signal components, i.e.,
those lying outside the assumed band-region for the signal.

This work was partially supported by a graduate fellowship from the
Computation Science and Engineering program at the University of Illinois.

In related work, Khurgin and Yakovlev [5] have introduced an
aliasing error energy upper bound for the low-pass sampling of 1-D
signals. The bounds we propose in this work, however, apply to M-D
problems and the sampling representation is general, possibly multi-
band. Furthermore, we also show that our bounds can be arbitrarily
tighter than Khurgin-Yakovlev’s for a practical class of signals.

The presented results also complement alternative approaches
proposed recently (for the 1-D case only) which involve conditions
on the signal’s “modulus of continuity” (a smoothness measure) in
the sampling (spatial) domain [7, 8]. It is important to note that
in signal processing, it is natural to express sampling restrictions
based on the Fourier transform of the signal (which is the case for our
bounds) whereas conditions on modulus of continuity or derivatives
are, in most cases, of little practical significance. Furthermore, these
bounds are generally more restrictive and apply to a smaller class
of signals compared to our results. Specifically, the bound in [7]
requires (at least) mean square differentiability in the spatial domain.

The proposed bounds can potentially be applied in most areas
of signal processing that involve aliasing in the sampling scheme.
The error bounds provide quantitative measures of performance lim-
its and characterize fundamental limitations. More specifically, the
introduced bounds can be applied in designing sampling patterns for
signals with a known spectral estimate to satisfy a threshold on the
tolerable aliasing error. Problems of this type are of interest in many
areas of signal processing, for example, in multi-dimensional imag-
ing such as dynamic 4-D MRI of the human heart [9].

The paper is organized as follows. Section 2 introduces the no-
tation and provides a brief background of the previous work in this
area. In Section 3, we derive upper bounds for the aliasing error
energy in the M-D case. Next, Section 4 provides more intuition
and new bounds by analyzing the 1-D problem. In Section 5, we
compute closed-form bounds for two practical classes of signals and
propose very simple “folk” rules for computing a bound on the error
energy, which apply under certain decay conditions. Finally, in Sec-
tion 6, we compare our bounds to the Khurgin-Yakovlev bound for
signals with polynomially decaying spectra.

2. FORMULATION AND BACKGROUND

We denote a point lattice in Rn by Λ = {l : l = Vp,p ∈ Zn}
where V ∈ Rn×n is its nonsingular basis matrix. Recall that if a
function is sampled on Λ, its Fourier transform is replicated on the
polar lattice Λ∗ of Λ that has basis matrixV∗ = V−T [1].

Denote the Fourier transform of a signal f defined on Rn by

f̂(u) =

Z
Rn

f(x)e−2πju·xdx (1)

where x,u ∈ Rn are the spatial and frequency variables, respec-
tively, and u · x is the Euclidean dot product. The bounds presented
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in this work apply to signals (possibly nonbandlimited) in the class

F = {f ∈ L1(R
n) ∩ C(Rn) : f̂ ∈ L1(R

n)}
where L1(R

n) and C(Rn) denote the spaces of Lesbegue measur-
able functions absolutely integrable, and continuous on Rn, respec-
tively. These conditions are considered among the mildest in the
context of aliasing error (see [10] for references).

Consider an assumed band-region B for f such that translates of
B by the points in Λ∗ do not overlap: B + k ∩ B + l = φ,∀k, l ∈
Λ∗,k �= l. Here, (Λ∗,B) is called a “lattice packing.” If in addi-
tion, the translates of Λ∗ perfectly cover Rn then we have a “lattice
tiling.” Note that this formulation allows for general baseband and
multiband spectral supports for f . The sampling expansion (or ap-
proximation) on the sampling lattice Λ of any f is defined as

(SΛ,Bf)(x) =
X
l∈Λ

f(l)ϕ(x − l) (2)

where ϕ̂(u) = | det(V)|χB(u) and χB is the indicator function of
B (i.e., ideal M-D bandpass filter).

Given a lattice packing (Λ∗,B), sampling the signal f on lattice
Λ yields the following aliasing error:

e(x) = f(x) − (SΛ,Bf)(x). (3)

Uniform (point-wise) bounds for the aliasing error e(x) have
been studied extensively (see [3, 6] and references therein). A gen-
eralized version of the M-D uniform bound is [6]

|e(x)| ≤ 2

Z
Rn\B

|f̂(u)|du. (4)

If f is bandlimited to within B, i.e., support of f̂ is a subset
of B, the aliasing error is zero as can be inferred from the bound
in (4). This generalizes the so called “lowpass” sampling theorem
[1, 2] to almost arbitrary spectral supports. Extremal constructions
that achieve equality in (4) are also known [6, 10].

For signals f ∈ F with a spatial support S ∈ Rn of finite
Lebesgue measure m(S), the 1-norm bound in (4) implies the fol-
lowing 2-norm one [10]

‖e‖2 ≤ 2
p

m(S)

Z
Rn\B

|f̂(u)|du.

This bound is not generally tight (in fact, can be arbitrarily loose)
and will not be useful whenm(S) is relatively large.

3. NEW UPPER BOUNDS ON ALIASING ERROR ENERGY

3.1. Preliminaries

We start by considering the “bandlimiting” operators PB : F → F
and PBc : F → F defined by ( dPBf) = χBf̂ and (P̂Bcf) = χBc f̂ ,
respectively, where Bc = Rn\B is the out-of-band region. The fol-
lowing lemma [10] establishes a useful property of the sampling ex-
pansion operator SΛ,B.

Lemma 1 ([10]). The Fourier transform of the sampling expansion
in (2) is given by

(ŜΛ,Bf)(u) = χB(u)
X
k∈Λ∗

f̂(u + k). (5)

Corollary 1 ([10]). PBcSΛ,Bf = 0.

The following lemma, due to Bresler [10], expresses the 2-norm
of aliasing error in terms of PBcf , i.e., the out-of-band component
of f .

Lemma 2 ([10]). The aliasing error e(x) defined in (3) satisfies

‖e‖2
2 = ‖PBcf‖2

2 + ‖SΛ,BPBcf‖2
2.

The following lower bound for the energy of the aliasing error
follows from Lemma 2.

Corollary 2 ([10]). ‖e‖2
2 ≥ ‖PBcf‖2

2.

3.2. Derivation of the Upper Bounds

From Lemma 2, we observe that the aliasing error energy has two
components. The first,

ε2 �= ‖PBcf‖2
2 =

Z
Rn\B

|f̂(u)|2du (6)

is the out-of-band signal energy. We turn next to upper bound the
second component (in terms of the out-of-band signal).

Using the M-D version of Parseval’s relation,

‖SΛ,BPBcf‖2
2 = ‖ ̂SΛ,BPBcf‖2

2,

and Lemma 1 (substituting PBcf for f ) yields

‖SΛ,BPBcf‖2
2 =

Z
Rn

˛̨̨̨
χB(u)

X
k∈Λ∗

(P̂Bcf)(u + k)

˛̨̨̨2
du

=

Z
Rn

˛̨̨̨ X
k∈Λ∗\{0}

χB(u)(P̂Bcf)(u + k)

˛̨̨̨2
du

(7)

where (7) follows by noting that for k = 0, the summand is zero
since χB(u)χBc(u)f̂(u) = 0. We need the following lemma to
further simplify (7).

Lemma 3. If (Λ∗,B) is a lattice packing, then for all k ∈ Λ∗\{0},

(P̂Bcf)(u + k) = f̂(u + k)

Proof. The left hand side (LHS), according to the definition, can be
expanded as (P̂Bcf)(u + k) = χBc(u + k)f̂(u + k). Due to the
lattice packing property (see Sec. 2), (B + k) ∩ B = φ, that is,
χBc(u + k) = 1 for all k ∈ Λ∗\{0}, which proves the claim.

Applying Lemma 3 to (7), we have

‖SΛ,BPBcf‖2
2 =

Z
Rn

|χB(u)|2
˛̨̨̨ X
k∈Λ∗\{0}

f̂(u + k)

˛̨̨̨2
du

=

Z
B

˛̨̨̨ X
k∈Λ∗\{0}

f̂(u + k)

˛̨̨̨2
du

=

Z
B

X
k,l∈Λ∗\{0}

¯̂
f(u + k)f̂(u + l)du

=
X

k,l∈Λ∗\{0}

Z
B

¯̂
f(u + k)f̂(u + l)du (8)
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where ¯̂
f denotes the complex conjugate of f̂ . The switch of the order

of the sum and integral in (8) holds under mild conditions. Next, we
apply the Cauchy-Schwartz inequality (in the inner product space of
L2(R

n)) to the summand in (8),

Z
B

¯̂
f(u+k)f̂(u+l)du ≤

sZ
B

|f̂(u + k)|2du
sZ

B

|f̂(u + l)|2du
(9)

Note that
R
B
|f̂(u + k)|2du =

R
B+k

|f̂(u)|2du (simply a
change of integration variable). Next, define the sequence {ak}k∈Λ∗

as ak

�
=

qR
B+k

|f̂(u)|2du for k ∈ Λ∗\{0} and a0

�
= 0.

Combining (8) with (9), we have

‖SΛ,BPBcf‖2
2 ≤

X
k,l∈Λ∗

akal =
“ X
k∈Λ∗

ak

”2

(10)

where the summation range need not exclude {0} since a0 = 0.
Adding the out-of-band signal energy ε2 defined in (6) to both sides
of (10) and applying Lemma 2 to the resulting inequality yields

‖e‖2
2 ≤ ε2 +

“ X
k∈Λ∗

ak

”2

(11)

which gives our first error energy upper bound, referred to as (B.1).

Lemma 4. For a lattice packing (Λ∗,B),X
k∈Λ∗\{0}

Z
B+k

|f̂(u)|2du ≤
Z

Rn\B

|f̂(u)|2du (12)

with equality for a lattice tiling (Λ∗,B).

Proof. Since (Λ∗,B) is a lattice packing, we have that ∪k∈Λ∗B +
k ⊆ Rn (equality holds for a lattice tiling). Therefore,X
k∈Λ∗

Z
B+k

|f̂(u)|2du =

Z
S

k∈Λ∗ B+k

|f̂(u)|2du ≤
Z

Rn

|f̂(u)|2du

Subtracting
R
B
|f̂(u)|2du from both sides gives (12).

Note that the LHS of (12) is equal to
P

k∈Λ∗ a2
k and its right

hand side is ε2. Applying Lemma 4 to an expanded version of (11)
provides our second bound, referred to as (B.2).

Finally, denoting the L∞ norm (function maximum) by ‖.‖∞, it
follows that

ak =

sZ
B+k

|f̂(u)|2du ≤
p

m(B)‖f̂χB+k
‖∞ (13)

where m(.) denotes the Lebesgue measure. Combined with (B.1),
(13) gives our third bound, (B.3). These bounds (together with
Corollary 2) are summarized next.

Theorem 1. For a lattice packing (Λ∗,B) and f ∈ F , the aliasing
error energy satisfies the following bounds for i = 1, 2, 3Z

Rn\B

|f̂(u)|2du ≤ ‖e‖2
2 ≤ (ci + Qi)

Z
Rn\B

|f̂(u)|2du

where

c1 = 1, Q1 =
1R

Rn\B
|f̂(u)|2

0@ X
k∈Λ∗\{0}

sZ
B+k

|f̂(u)|2du
1A2

c2 = 2,

Q2 =
1R

Rn\B
|f̂(u)|2

X
k,l∈Λ∗\{0}
k �=l

sZ
B+k

|f̂(u)|2du
Z
B+l

|f̂(u)|2du

c3 = 1, Q3 =
m(B)R

Rn\B
|f̂(u)|2

0@ X
k∈Λ∗\{0}

‖f̂χB+k
‖∞

1A2

and are referred to as (B.1), (B.2), (B.3), respectively.

Remarks. The above bounds have the following properties:
• All are only a function of out-of-band signal components.
• Equality conditions for all of the bounds involve the famous
Cauchy-Schwartz equality condition in (9). For (B.2), an ad-
ditional condition exists (lattice tilting) as noted in Lemma 4.
The equality condition for (B.3) is evident from (13). Hence,
(B.1) is the tightest bound among the three.

• In practice, the lattice packing (Λ∗,B) is usually quite close
to a lattice tiling. In that case, (B.1) and (B.2) would be close,
and since c2 + Q2 ≥ 2, all bounds are larger than or equal to
2ε2. In Sec. 5, we compute Q1 for specific cases.

4. SIMPLIFIED BOUNDS FOR PRACTICAL CASES IN 1-D

Consider a 1-D function f with an assumed band-region B =

[−σ, σ] for f̂(u). The (B.1) bound, assuming Nyquist rate sampling
(with respect to B), can be written as

‖e‖2
2 ≤ ε2 +

0@ ∞X
|p|=1

sZ
Ip

|f̂(u)|2du

1A2

(14)

where Ip = [σ(2p − 1), σ(2p + 1)] and ε2 is defined in (6). In this
section, we first show that (14) can be reduced to a finite-term sum
which can be advantageous for computational purposes.

In a practical setting, we expect that |f̂(u)| would drop sharply
for out-of-band frequencies. Assume the following “decay” condi-
tion sZ

Ip+M

|f̂(u)|2du ≤
Z

Ip

|f̂(u)|du for p ≥ 1 (15)

for some M ∈ N and a similar inequality for p ≤ −1 with LHS
replaced by integral over Ip−M . Considering that we assumed a
low-pass model for B in this section, the condition arises naturally
since the signal content at higher frequency intervals (withL2-norm)
will eventually be smaller than that of the lower frequency intervals
(with L1-norm). In fact, since f̂ ∈ L1(R), it can be shown that there
always exists suchM ∈ N.

By combining (14) and (15), it can be shown that

‖e‖2
2 ≤ ε2 +

„
R +

Z
|u|≥σ

|f̂(u)|du

«2

(16)

where R =
PM
|p|=1

qR
Ip

|f̂(u)|2du.
In most practical cases, there is sufficient drop (or high enough

decay rate) in the out-of-band energy such that (15) holds forM = 1
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and R2 ≤ ε2. Under these conditions, using the inequality (R +
a)2 ≤ 2R2 + 2a2, we can further upper bound (16) as

‖e‖2
2 ≤ 3

Z
|u|≥σ

|f̂(u)|2du + 2
“Z
|u|≥σ

|f̂(u)|du
”2

(17)

which only involves 1- and 2-norms of the total out-of-band signal
(but is less tight than (14) or (16)). This bound, although not as
tight, provides more intuition into the behavior of the aliasing error.
For instance, one can readily infer the convergence of ‖e‖2

2 to zero as
σ → ∞. This proves a 2-norm version of the so called “approximate
sampling theorem” for nonbandlimited signals [8, 11].

5. BOUNDS FOR TWO PRACTICAL SIGNAL CLASSES

In this section, we consider two large (but not disjoint) classes of
signals that are frequently encountered in practice, namely signals
with (at least) exponential or polynomial out-of-band decay:

|f̂exp(u)| ≤ c e−γ|u|, |u| > σ |f̂poly(u)| ≤ c

|u|γ , |u| > σ (18)

for constants c, γ ∈ R+. Note that since f̂ ∈ L1(R), for f̂poly,
decay rate is further restricted to γ > 1. The bound (B.1) in (14)
(denoted by UBB.1) for each of the signal classes above gives

UBexp
B.1 = ε2

exp

`
3 + 4e−2σγ´

UBpoly
B.1 = ε2

poly

„
1 + 2

“ ∞X
p=1

p
(2p + 1)2γ−1 − (2p − 1)2γ−1

(4p2 − 1)γ−1/2

”2
«

where ε2
exp = c2e−2σγ/γ and ε2

poly = 2σ1−2γc2/(2γ − 1).
Note that UBexp

B.1 is an approximation of the exact bound assuming
exp(−4σγ) 
 1 which is typically satisfied.

Figure 1 shows plots of Q1 of the (B.1) bound as a function of
the decay rate γ (recall that ‖e‖2

2 ≤ (1+Q1)ε
2). For the exponential

class σ is taken to be 0.5. For polynomial decay, Q1 is independent
of σ. (Note that ε2 decreases sharply as σ increases for both classes.)
As depicted in Fig. 1, for polynomial decay with γ ≥ 2.4, we have
Q1 ≤ 3, hence ‖e‖2

2 ≤ 4ε2. Also for γ ≥ 2.4, the exponential class
has Q1 ≤ 2.4, i.e., ‖e‖2

2 ≤ 3.4ε2. For both classes with γ ≥ 4,
Q1 ≤ 2.1, i.e., ‖e‖2

2 ≤ 3.1ε2. Based on such observations, we can
arrive at a series of useful “folk” results, which provide estimates of
Q1 under certain decay conditions, e.g., the following proposition.
The tightness of these folk bounds depends on the choice of c and γ.

Proposition. If, for a given c ∈ R+, a signal f ∈ F with B =
[−σ, σ] belongs to the polynomial signal class in (18) with γ ≥ 4 or
the exponential signal class with γσ ≥ 2 then ε2 ≤ ‖e‖2

2 ≤ 3.1 ε2.

6. COMPARISON TO THE KHURGIN-YAKOVLEV BOUND

Khurgin et al. [5] provide the following bound for the 1-D problem
for “most interesting cases of behavior” (not specified in [5]),

‖e‖2
2 ≤ 3ε2 + 2

√
2ε2

∞X
p=1

sZ ∞

(2p+1)σ

|f̂(u)|2du (19)

where we assumed |f̂(−u)|2 = |f̂(u)|2 to shorten the presentation.
Let us consider a signal that has (at least) a polynomial decay

for |u| > σ, i.e., f̂poly(u) defined in (18). Computing the bound in
(19) (denoted by UBK−Y) for this signal yields

UBpoly
K−Y = ε2

poly

„
3 + 2

∞X
p=1

1

(2p + 1)γ−1/2

«

1.5 2 2.5 3 3.5 4 4.5 5
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Fig. 1. Plot of Q1 of our upper bound (B.1) as a function of the decay rate
γ for both polynomially and exponentially decaying signals (with σ = 0.5).

It can be shown that for 1 < γ ≤ 1.5, UBpoly
K−Y → ∞ whereas

UBpoly
B.1 converges for any γ > 1, i.e., for all f ∈ F . This can

be more clearly seen by plugging γ = 1.5 in the bounds com-
puted above. It turns out that UBpoly

K−Y ∝ P∞
p=1 p−1 which fails

to converge. In contrast, UBpoly
B.1 ∝ `P∞

p=1 p−1.5
´2 which con-

verges. Thus, we have shown that for a practical class of signals, the
Khurgin-Yakovlev bound can exceed ours by an arbitrary factor.
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