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ABSTRACT

We present Nyquist pulse shaping conditions for two-
dimensional (2-D) digital communication systems to be free
from inter-symbol interference, for general regular sampling
grids. We provide examples of 2-D pulse functions satisfy-
ing these Nyquist conditions. In particular, we show that a
family of 2-D pulse functions that we construct as separable
pulse functions from one-dimensional Nyquist-1 pulse func-
tions obey the 2-D Nyquist criterion and moreover include the
one with minimum support area in the frequency domain.

Index Terms— 2-D digital communication systems, 2-D
inter-symbol interference, Nyquist pulse shaping criterion, 2-
D Nyquist-1 pulse functions

1. INTRODUCTION

The Nyquist pulse shaping criterion in digital communica-
tions provides necessary and sufficient conditions on the pulse
function such that no inter-symbol interference (ISI) results.
In particular, for a one-dimensional (1-D) digital communica-
tions system, the Nyquist criterion [1] states that

Theorem 1 The sufficient and necessary condition for the
pulse function x(t) to satisfy the zero ISI condition

x(nT ) = δ(n) (1)

is that its Fourier transformX(f) satisfies

∞∑
m=−∞

X(f + m/T ) = T, (2)

where δ(·) is the Kronecker delta function and T is the sam-
pling period.

The pulse functions that satisfy Theorem 1 are known as
1-D Nyquist-1 pulse functions. In practice, real-valued pulse
functions x(t) are of interest, for which X∗(f) = X(−f).

A particular example of a real-valued 1-D Nyquist-1 pulse
function is the raised cosine function, given by

xβ,T (t) = sinc(πt/T )
cos(πβt/T )

1− 4β2t2/T 2
, (3)

where β, with 0 ≤ β ≤ 1, is the roll-off factor. The Fourier
transform of xβ,T (t) is

Xβ,T (f)=

⎧⎪⎨
⎪⎩

T, |f | ≤ 1−β
2T

T
2

+ T
2

cos
(

πT
β

(|f | − 1−β

2T
)
)
, 1−β

2T
< |f | ≤ 1+β

2T

0, elsewhere.
(4)

Note that β = 0 results in the minimum bandwidth pulse
function, which is xT (t) = sinc(πt/T ), with Fourier trans-
formXT (f) = T, for |f | ≤ 1

2T
, and zero, elsewhere.

In this paper, we consider 2-D systems, and present coun-
terpart results to Theorem 1. Interest in characterization of
ISI and associated signal processing techniques has resulted
from recent work on two-dimensional storage systems [2–5].
However, to our knowledge, a Nyquist pulse shaping criterion
for such 2-D systems has not been addressed in literature. In
this paper, we derive 2-D Nyquist pulse shaping conditions
for regular 2-D sampling grid shapes and present families of
pulse functions that satisfy this criterion. One construction
is provided based on 1-D Nyquist-1 pulse functions, and we
show that such 2-D Nyquist pulse functions have minimum
support area in the frequency domain. We specialize our re-
sults to two commonly used sampling grids - rectangular and
hexagonal. Hexagonal sampling, for instance, has attracted at-
tention in applications in storage systems given the storage
density improvement under this grid shape.
The rest of the paper is organized as follows. We develop

the Nyquist ISI-free criterion for 2-D digital communication
systems in Section 2. A general approach to construct a class
of 2-D Nyquist-1 pulse functions is presented in Section 3
for general sampling grids. Section 4 concludes this paper.
In dealing with 2-D signal analysis, we follow the notations
from [6].
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2. 2-D NYQUIST PULSE SHAPING CRITERION

In a 2-D digital communication system, transmitted symbols
are arranged on an infinite plane, with their locations pre-
scribed by a regular grid. At the receiver, each symbol results
in a pulse centered at the symbol location. There is possible
overlap among the pulses. The receiver in turn samples at the
symbol locations.
A 2-D discrete signal is represented by samples

{ỹ(n1, n2)}, where ỹ(n1, n2) represents the sample value at
the location described by the ordered integer pair (n1, n2),
where −∞ < n1, n2 < ∞. These samples are obtained by
regular sampling of a continuous 2-D signal y(t) defined in
the continuous (t1, t2) plane, with

t = Vn,

where t = [t1, t2]
T , n = [n1, n2]

T , and V = [v1,v2] is the
sampling matrix, with v1 and v2 being two 2×1 linearly in-
dependent vectors. Among the numerous choices of the sam-
pling matrixV, two special cases corresponding to rectangu-
lar and hexagonal sampling are of common interest.
The distortion resulting from overlapping among differ-

ent pulses at the sampling location is termed 2-D ISI. The
2-D zero ISI criterion corresponds to the condition that the re-
ceived sampled signal contains only the component from one
transmitted pulse, or equivalently, sampling a single pulse at
a sampling location results in a 2-D Kronecker delta function.
The 2-D Nyquist criterion for zero ISI thus is given by the
condition:

ỹ(n) = δ(n), (5)
where δ(n) is a 2-D Kronecker delta function.
Now, the respective discrete and continuous 2-D Fourier

transforms, Ỹ () and Y (), of signals ỹ(n) and y(t) are related
by [6]

Ỹ (VT f) =
1

|V|
∑
n

Y (f + V
−T

n), (6)

where |V|, VT and V
−T denote the determinant, transpose

and inverse-transpose of matrix V, respectively. Note that
Ỹ (VT f) can be considered to be a periodic extension of
Y (f), with the periodicity specified by the matrixV

−T . Tak-
ing the Fourier transforms of both sides of (5), we get that
(5) is satisfied if and only if Ỹ (f) = 1 and equivalently
Ỹ (VT f ) = 1. Then, using (6), we get that

Ỹ (VT f) =
1

|V|
∑
n

Y (f + V
−T

n) = 1. (7)

We thus have the following 2-D Nyquist pulse shaping crite-
rion for zero 2-D ISI.

Theorem 2 The sufficient and necessary condition for the
pulse function y(t) to achieve zero 2-D ISI on a regular grid
defined by the matrixV is∑

n

Y (f + V
−T

n) = |V|. (8)

This theorem shows that if the sum of all shifted versions
of Y (f) in a direction given by V

−T gives a flat spectrum,
there is no ISI among the samples of the received signal.
The pulse functions satisfying the condition in Theorem 2 are
named 2-D Nyquist-1 pulse functions.

2.1. 2-D Nyquist-1 Pulse Functions with Minimum Sup-
port Area

For 1-D digital communication systems, Nyquist-1 pulse
functions with minimum bandwidth are of particular interest.
As mentioned earlier in the introduction, xT (t) = sinc(πt/T )
is the unique real-valued 1-D Nyquist-1 pulse function with
minimum bandwidth equal to 1/T . We consider the notion
of minimum support area corresponding to a 2-D Nyquist-1
pulse function in order to extend the idea of minimum band-
width to the 2-D case. Let Y (f) be the Fourier transform
of a pulse function y(t). The support of Y (f) is then de-
fined as the set of (f1, f2) such that Y (f) is non-zero; the
support area is the area of this support. From Theorem 2,
2-D Nyquist-1 pulse functions with minimum support area
are those for which there is no overlap among the regularly
shifted versions, specified by V

−T , of Y (f). The minimum
regular shift is determined byV

−T , and hence the minimum
support area is |V−T | = 1/|V|. Unlike the 1-D case, the real-
valued Nyquist-1 pulse functions with minimum support area
for general grid shapes in the 2-D case may not be unique.

3. 2-D NYQUIST-1 PULSE FUNCTIONS

3.1. Rectangular Sampling Grid

The rectangular sampling grid is obtained by periodically
sampling the (t1, t2) plane such that sample points are spaced
T1 and T2 apart along the t1 and t2 axes respectively. For the
rectangular grid, the sampling matrix is given by

Vrec =

[
T1 0
0 T2

]
. (9)

From (8), the Nyquist zero-ISI criterion can be written as
∑
n

Y (f + [
n1

T1

,
n2

T2

]T ) = T1T2. (10)

We now provide constructions of 2-D Nyquist-1 pulse
functions satisfying the zero ISI criterion, using 1-D Nyquist-
1 pulse functions.
Separable 2-D Nyquist-1 pulse functions: Consider the

following separable pulse function

y(t1, t2) = y1(t1)y2(t2). (11)

In this case, condition (10) is satisfied if
∑

n1
Y1(f + n1

T1

) =
T1 and

∑
n2

Y2(f + n2

T2

) = T2, where Y1(f) and Y2(f) are
the Fourier transforms of y1(t1) and y2(t2), respectively. Now
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Fig. 1. Example of Nyquist pulse functions for rectangular
grid, for T1 = T2 = 1 and β1 = β2 = 0.5.

note that, if yi(t), i = 1, 2, are 1-D Nyquist-1 pulse functions
with zeros at niTi, ni �= 0, then y(t1, t2) = y1(t1)y2(t2)
is a 2-D Nyquist pulse function since it satisfies (5). In fact,
y(t1, t2) is equal to zero along the lines t1 = n1T1 and
t2 = n2T2, for n1 �= 0 and n2 �= 0. Also, the corre-
sponding Fourier transform of y(t1, t2) can be written as
Y (f1, f2) = Y1(f1)Y2(f2), where Y1(f1) and Y2(f2) are
the Fourier transforms of y1(t1) and y2(t2), respectively. It
is straightforward to see that (8) is satisfied for this Y (f1, f2).
A particular choice that arises from 1-D raised cosine

functions using (3) is y(t1, t2) = xβ1,T1
(t1)xβ2,T2

(t2), where
β1 and β2 represent roll-off factors. The plots of y(t1, t2) and
Y (f1, f2) for β1 = β2 = 0.5 and T1 = T2 = 1 are shown in
Fig. 1.
Note that it is also possible to construct 2-D Nyquist-1

functions that are non-separable. For instance, a family of 2-
D non-separable functions can be written as

y(t1, t2) = t21y
2
1(t1) + t22y

2
2(t2) + y2

1(t1)y
2
2(t2). (12)

However, we restrict our attention in this paper to separable
pulse functions since they include the ones with minimum
support area, as shown as follows.

3.1.1. 2-D Nyquist-1 Pulse Functions with Minimum Support
Area for the Rectangular Grid

For the rectangular sampling grid, the pulse function
y(t1, t2) = xT1

(t1)xT2
(t2) = sinc(πt1/T1)sinc(πt2/T2)

with Fourier transform Y (f1, f2) = XT1
(f1)XT2

(f2) has a
minimum support area of 1/(T1T2) = 1/|Vrec|. More gen-
erally, it shows that a separable class of 2-D Nyquist-1 pulse
functions exists which includes the one with minimum sup-
port area. Note that, unlike the 1-D case, this 2-D function
with minimum support area is not unique.
The construction of 2-D Nyquist pulse functions for gen-

eral regular sampling grids can be done based on 2-D Nyquist
pulse functions on a rectangular grid. We now provide a con-
struction of a family of such pulse functions for a general grid
shape by using pulse functions that satisfy the zero ISI condi-
tion under rectangular sampling.

3.2. General Sampling Grids

Let yrec(t) be a Nyquist-1 pulse function that satisfies the
zero ISI criterion under a rectangular grid. Therefore, we must
have yrec(Vrecn) = δ(n). For a general grid shape character-
ized byVg, define a pulse function yg(t) as follows

yg(t) = yrec(VrecV
−1
g t). (13)

Now, we have

yg(Vgn) = yrec(Vrecn) = δ(n).

Thus yg(t) is a 2-DNyquist-1 pulse function for the grid spec-
ified byVg.
Moreover, if yrec(t) is a separable pulse function on the

rectangular sampling grid, then yg(t) is also separable in the
directions of the linearly independent vectors specified by
Vg. To see this, suppose yrec(t) is separable. Then yrec(t) =
y1(t1)y2(t2). Now, denote VrecV

−1
g = [u1,u2]

T , where u1

and u2 are 2×1 linearly independent vectors. Then,

yg(t) = yrec(VrecV
−1
g t)

= y1(u
T
1 t)y2(u

T
2 t), (14)

where the last equation holds since yrec(t) is separable.

3.2.1. 2-D Nyquist-1 Pulse Functions with Minimum Support
Area for General Grids

We know that the separable function, yrec(t) =
xT1

(t1)xT2
(t2), is the one with minimum support area,

i.e. 1/|Vrec|, for the rectangular grid. We now show that
yg(t) = yrec(VrecV

−1
g t) also has minimum support area, i.e.

1/|Vg|, for the regular grid characterized byVg. The Fourier
transforms Yg(f) and Yrec(f) of yg(t) and yrec(t) respec-
tively are related as Yg(f) = 1

|VrecV
−1

g |
Yrec((VrecV

−1
g )−T f).
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Fig. 2. Example of Nyquist-1 pulse functions for hexagonal
grid, for T1 = T2 = T = 1 and β1 = β2 = 0.5. The zeros of
y(t1, t2) are along the directions defined byVhex.

Thus the support area of Yg(f) is

=
1

|(VrecV
−1
g )−T | .minimum support area of Yrec(f)

=
|Vrec|
|Vg| .

1

|Vrec| =
1

|Vg| . (15)

3.2.2. Hexagonal Sampling Grid

As an example of a general grid, we consider the hexagonal
grid, which is characterized by the matrixVhex,

Vhex =

[ √
3T/2

√
3T/2

T/2 −T/2

]
, (16)

where T is the distance between neighboring node on the
hexagonal grid.
We follow the approach introduced in Section 3.2 to con-

struct a 2-D Nyquist-1 pulse function for a hexagonal grid.
Using (14), a 2-D Nyquist-1 pulse function for a hexagonal

grid is given by

y(t1, t2) = y1(
T1√
3T

t1 +
T1

T
t2)y2(

T2√
3T

t1 − T2

T
t2). (17)

A particular case with y1(t1) = xβ1,T1
(t1), and y2(t2) =

xβ2,T2
(t2), with β1 = β2 = 0.5 and T1 = T2 = T = 1 is

shown in Fig. 2. Note that β1 = β2 = 0 yields a real-valued
2-D Nyquist pulse function with minimum support area.

4. CONCLUDING REMARKS

We presented a Nyquist pulse shaping criterion to achieve
zero 2-D ISI in 2-D digital communication systems. We pro-
vided families of 2-D Nyquist-1 pulse functions for the rect-
angular sampling grid and extended them to general sampling
grids. In particular, a family of separable 2-D Nyquist-1 pulse
functions was constructed from 1-D Nyquist-1 pulse func-
tions, and was shown to include the one with minimum sup-
port area. Thus, it is sufficient to restrict attention to sepa-
rable pulse functions to achieve zero 2-D ISI, while having
minimum support area. An interesting next step would be to
develop pulse functions that satisfy the 2-D Nyquist criterion
and have other desirable properties specific to practical appli-
cations such as storage systems.
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