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ABSTRACT

Penalized least-squares (PELS) rules for signal denoising can be ob-
tained via the use of various information criteria (AIC, BIC, etc.) or
various minmax LS approaches. Let S denote the set of ”significant”
parameters in the denoising problem (which is to be determined), let
nS be the dimension of S, and let nSρ denote the penalty term of
a PELS criterion. We show that, depending on the expression for
ρ, the following cases can occur: type-1) If ρ does not depend on
S, then denoising via the corresponding PELS rule is equivalent to
simple thresholding; and type-2) If ρ depends on nS only, then the
equivalence to thresholding no longer holds but the PELS rule can
still be implemented quite efficiently. We also show that the use of
BIC leads to an existing PELS rule of type-1 when the noise vari-
ance in the denoising problem is known, and to a novel PELS rule of
type-2 when the noise variance is unknown.

Index Terms— Signal denoising, thresholding, model order se-
lection, information criterion

1. INTRODUCTORY REMARKS AND PROBLEM
FORMULATION

Let Φ ∈ R
N×N be an orthonormal matrix, and let ΦS ∈ R

N×nS

be a matrix constructed from nS columns of Φ. Hereafter, S ⊂
{1, ..., N} denotes the set of indices of the columns of Φ that form
ΦS , and nS is the dimension of S. The assumption that Φ is or-
thonormal is usually made in the literature on the denoising problem,
and we adopt it for convenience. Furthermore, we make the common
assumption that the data vector, y ∈ R

N×1, can be written as:

y = ΦSθS + e (1)

where θS ∈ R
nS×1 is a vector of unknown parameters, and e ∈

R
N×1 is a normally distributed noise vector with mean zero and

covariance matrix equal to σ2I .
The denoising problem consists of estimating the noise-free “sig-

nal” part, ΦSθS , of (1) from the noisy data in y. Estimation of S
is the central part of this problem. Indeed, if S were known then the
least-squares (LS) estimate of θS , namely

θ̂S = ΦT
S y (2)

((·)T denotes the transpose) could simply be used to produce the

following “signal” estimate: ŷ = ΦS θ̂S .
Methods for estimating S have been suggested by several au-

thors, see e.g. [1–5] and the references therein. Estimating S is also
the main topic of this paper. As in most of the cited references, we
assume that nS � N . While this requirement is a limitation, we
believe it is a fairly natural one: if the value of nS was compara-
ble with N , then most denoising methods, if not all, would likely
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perform rather poorly, and therefore this situation appears to be of
relatively minor practical interest.

Under the assumption that σ2 in (1) is known, we use the Bayes-
ian Information Criterion (BIC), see e.g. [6, 7] and references in [7],
to obtain a denoising rule of the penalized least-squares (PELS) type,
which we call DEBIT (DEnoising via BIc Thresholding). We show
that DEBIT is equivalent to simple thresholding, and consequently
we compare it with a thresholding rule in [1] (obtained by a different
approach). DEBIT has also been obtained in [2], in a related context,
by means of a minimum description length (MDL) approach, and in
a more general form in [4] by using an extended BIC approach.

When σ2 in (1) is unknown, the use of BIC is shown to lead
to a slightly more involved PELS rule. While this rule is no longer
equivalent to thresholding, its use is still quite simple computation-
ally. Using a slight modification of the BIC, we derive the DEMBIT
(DEnoising via Modified BIc Thresholding) method, that appears to
be a useful addition to the set of existing denoising rules, since it
does not require that σ2 be known and since it is relatively simple to
implement (as already mentioned).

We will also discuss briefly the KICc and MDL methods derived
in [5], which we will use in a comparison study.

Finally, we will compare numerically the denoising performance
of some of the thresholding rules in [1] and [5], of DEBIT, and of
DEMBIT.

2. PELS DENOISING RULES

Under the assumptions stated earlier, the likelihood function of y in
(1) is given by:

fS(y|θS , σ2) =
1

(2πσ2)N/2
exp

{
− 1

2σ2
‖y − ΦSθS‖2

}
. (3)

As is well known, the maximum likelihood estimates of θS an
σ2 (which maximize (3), for a given S) coincide with the LS esti-

mates of these parameters: (2) for θ̂S , and

σ̂2 =
1

N

∥∥∥y − ΦS θ̂S

∥∥∥2

(4)

for σ2. In the sequel, we first assume that σ2 is known, and then we
go on to relax this assumption.

2.1. DEBIT

Assuming that σ2 is known, the BIC estimate of S is given by ( [6,7]
etc.):

min
S

[−2 ln fS(y|θ̂S , σ2) + nS ln N ]. (5)

Some simple calculations show that (5) can be reduced to the mini-
mization of the following PELS criterion:

min
S

[∥∥∥y − ΦS θ̂S

∥∥∥2

+ nSρ

]
; ρ = σ2 ln N. (6)
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Next we note that

∥∥∥y − ΦS θ̂S

∥∥∥2

=
∥∥∥(I − ΦSΦT

S )y
∥∥∥2

= ‖y‖2 −
∥∥∥θ̂S

∥∥∥2

(7)

which implies that (6) is equivalent to:

max
S

nS∑
k=1

(|θ̂k
S |2 − ρ) (8)

(hereafter, θ̂k
S denotes the k-th component of θ̂S). The solution to

the maximization problem above is given by:

Ŝ =
{

k ∈ {1, ..., N}| |θ̂k| >
√

ρ
}

; θ̂ = ΦT y, (9)

where θ̂k is the k-th element in θ̂. To see this, we observe that
for S = Ŝ all the terms in (8) are positive; and that if we remove

elements from Ŝ in (9) or add elements to it, then the corresponding
value of the criterion in (8) becomes smaller than its value at S =
Ŝ due to omitting positive terms from it or, respectively, including
negative terms in it.

It follows from the previous analysis that the application of BIC
to the model in (1) leads to the simple thresholding rule in (9) with
a threshold

√
ρ = σ

√
ln N . This denoising rule, which we call

DEBIT, was previously derived in [2] by means of an MDL approach
and of a limiting argument; it was also obtained in [4], for a slightly
more general problem, by using an extended BIC approach. Inter-
estingly, DEBIT is similar to the thresholding-based denoising rule
introduced in [1], using a deterministic minmax LS approach, for

which Ŝ is also given by (9) but with
√

ρ = σ
√

2 ln N . We will
refer to the latter rule as THRESH.

To conclude this sub-section, we remark on the fact that the
derivation of (9) remains valid for any PELS rule of the form of
(6), for which ρ is independent of S. For instance, the use of AIC,
in lieu of BIC, would lead to (6) with ρ = 2σ2. Because BIC has
more appealing properties than AIC and than other IC rules (at least,
for sufficiently large values of N ; see e.g. [7] and the references
therein), we will not consider any of these possible alternative forms
of (6) in this paper.

2.2. DEMBIT

When σ2 is unknown, the BIC rule is still given (under the previously
made assumptions) by (5) but with σ2 replaced by σ̂2 in (4). As
indicated above, the threshold used in THRESH is larger than that
of DEBIT by a factor of

√
2; therefore THRESH can be seen as

method that penalizes large values of nS harder than BIC. Because
simulations have shown that THRESH performs better than DEBIT,
we modify (5) so that it uses the THRESH penalty:

min
S

[−2 ln fS(y|θ̂S , σ̂2) + nS2 ln N ]. (10)

A simple calculation shows that the so-modified rule estimates S as
the solution to the following minimization problem:

min
S

[
ln

∥∥∥y − ΦS θ̂S

∥∥∥2

+ 2γS

]
; γS =

nS ln N

N
. (11)

Asymptotically in N , using the fact that for x � 1

ln(1 + x) ≈ x, (12)

the PELS rule above is equivalent to

min
S

[
ln

∥∥∥y − ΦS θ̂S

∥∥∥2

+ ln (1 + 2γS)

]
. (13)

Making use of (7) we can re-write (13) as

max
S

[
(1 + 2γS)‖θ̂S‖2 − 2γS ‖y‖2

]
. (14)

In general, the solution to the above maximization problem can no
longer be obtained via thresholding. Nevertheless, it can still be ef-
ficiently computed as follows:

• Let θ̂ = ΦT y (as in (9)), and observe that θ̂S is made from
the elements of θ̂ whose indexes belong to the set S. Order

the entries of θ̂ in a decreasing magnitude order:∣∣∣θ̂ν1

∣∣∣ �
∣∣∣θ̂ν2

∣∣∣ � · · · �
∣∣∣θ̂νN

∣∣∣ ,

where νk ∈ {1, . . . , N}, and νj �= νk if j �= k.

• For each fixed value of nS (nS = 1, 2, . . .), the correspond-
ing optimum solution of (14) is clearly given by:

S̃nS = {ν1, . . . , νnS}. (15)

• To choose one of the sets above (see (15)), we could compare
the values of the approximate criterion in (14) corresponding
to S = S̃nS , for nS = 1, 2, . . . , N . However, to avoid the er-
rors introduced by the approximation in (12), we use instead
the exact criterion (11): we evaluate (11) with S = S̃nS , for
nS = 1, 2, . . . , N , and choose the set that gives the smallest
value.

The so-obtained denoising rule will be called DEMBIT. Evi-
dently, the DEMBIT algorithm outlined above can be used to find
the solution of any PELS problem that has the form of (13) with a
general “penalty” factor γS , provided that γS depends only on nS .

The DEMBIT denoising rule, introduced above, appears to be
novel. Its main appeal lies in the fact that it does not require σ2 to
be known, unlike most other existing denoising rules, and that its
implementation is relatively simple computationally.

2.3. MDL and KICc denoising

Closely related to the DEMBIT denoising rule are the minimum de-
scription length (MDL) [2] and the Kullback Information Criterion
corrected (KICc) [5] denoising methods. The principles of these
rules are similar to the one of DEMBIT, but these rules differ in
the derivation and in the minimizing criteria. For MDL denoising,
let kopt denote the k = 1, ..., N that minimizes

MDL(k) = (N − k) ln

(‖y‖2 − ‖yk‖2

N − k

)
+

k ln

( ‖yk‖2

k

)
− ln

(
k

N − k

)
, (16)

where yk is the vector consisting of the k elements of y that have the
largest magnitude. For KICc the criterion that gives kopt is defined
as

KICc(k) = N ln

( ‖y‖2 − ‖yk‖2

N

)
+ 2

(k + 1)N

N − k − 2
−

Nψ

(
N − k

2

)
, (17)

3706



0 5 10 15 20
−40

−35

−30

−25

−20

−15

−10

−5

0

SNR (dB)

M
S

E
 (d

B
)

DEBIT
THRESH
DEMBIT
MDL
KICc
1/SNR

Fig. 1. MSE as a function of the SNR when nS0 = 5.

where ψ(·) is the digamma function [8]. Now, let

ykopt
=

[
yν1 . . . yνkopt

]T

.

Then Ŝ = {ν1, ..., νkopt}. For a detailed description of these meth-
ods, see [5].

3. NUMERICAL EXAMPLES AND CONCLUDING
REMARKS

We will consider two cases. In the first one we randomly generate a
sparse vector θ and use an identity matrix, I , as the regressor matrix
Φ. In the second case we use a Daubechies type mother wavelet as
regressor matrix for three different signals: a chirp, a seismic signal,
and a piecewise polynomial signal with discontinuity. These exam-
ples were previously studied in [5]. To generate the wavelets we use
the WaveLab framework [9].

3.1. Identity Regressor Matrix

We consider a case in which Φ = I , such that ΦSθS in (1) can
be viewed as the “signal” itself (rather than a linear model thereof).
We choose N = 500, and consider two values for nS0 : nS0 = 5
and nS0 = 20; here, S0 denotes the true set used to produce the
data. We generate S0 randomly by picking up (without replacement)
nS0 indices from a uniform distribution over the set {1, . . . , N}.
The elements of θS0 are independently drawn from nS0 zero-mean
normal distributions with standard deviation σθ = 1. Finally, the
noise variance σ2 is selected to make the signal-to-noise ratio,

SNR =
‖θS0‖2

Nσ2
(18)

vary from 0 dB to 20 dB.
Figures 1 and 2 show the mean squared error (MSE) of the meth-

ods outlined in the previous section,

E

⎡
⎢⎣

∥∥∥ΦS0θS0 − ΦŜ θ̂Ŝ

∥∥∥2

‖θS0‖2

⎤
⎥⎦ (19)

for nS0 = 5 and, respectively, nS0 = 20. The expectation in (19) is
empirically evaluated using 106 Monte-Carlo simulation runs corre-
sponding to (100 realizations of S0) × (100 realizations of θS0 ) ×
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Fig. 2. MSE as a function of the SNR when nS0 = 20.

(100 realizations of e). As a comparison, the naive LS estimate of
θ, whose MSE is equivalent to 1/SNR, is also plotted.

We can see that the proposed method DEMBIT and the THR-
ESH method perform similarly and outperform the other methods.
Bear in mind, though, that THRESH is supplied with the true noise
variance and thus assumes it to be known, a rather unlikely assump-
tion in real applications. KICc and MDL, like DEMBIT, estimate
the noise variance from the data but they perform worse.

3.2. Wavelets as Regressor Matrix

In this subsection a Daubechies type wavelet of length 6 and lower
resolution cutoff 3 is used as regressor matrix. Let f =
[f(t1) . . . f(tN )]T be the vector containing the time samples of the
noise-free signal. As in [5], the following three different signals are
used:

1) A chirp signal,

fchirp(t) = sin
(
40π(1.5t2 − 1.36t + 0.68)

)
, t ∈ [0, 1]

to which noise with variance σ2
0 = 0.5 is added. This type of signal

is typically encountered in radar and sonar signal processing. The
wavelet coefficients (i.e. the vector θ) of the noise-free signal can be
seen in Figure 3(a).

2) A 1-D seismic signal, fseis(t), with added noise variance of
σ2

0 = α ‖f‖∞, α = 0.01. (i.e., the noise is proportional to the
magnitude of the largest element of the noise-free seismic data). This
example signal is included in the WaveLab package and is used as
a test data set in the seismic industry [5]. A plot of the wavelet
coefficients of the noise-free signal is shown in Figure 3(b).

3) A piecewise polynomial signal,

fPP (t) =

⎧⎨
⎩

4t2(3 − 4t) t ∈ [0.00, 0.50]
4
3
t(4t2 − 10t + 7) − 3

2
t ∈]0.50, 0.75]

16
3

t(t − 1)2 t ∈]0.75, 1.00]

to which noise with variance σ2
0 = 0.1 is added. This is an ex-

ample of a smooth signal with a discontinuity, often encountered in
edge detection applications. The wavelet coefficients of the noise-
free signal can be seen in Figure 3(c).

All signals consisted of 1024 time samples corrupted with white
Gaussian noise of variance σ2

0 . To transform the signal to the wavelet
domain we use the package WaveLab850 [9].
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Fig. 3. The wavelet coefficients of (a) the chirp signal; (b) the seis-
mic signal; and (c) the piecewise polynomial signal.

The MDL, KICc, and DEMBIT methods are again compared

using the MSE of the denoised signal f̂

E

[∥∥∥f − f̂
∥∥∥2

]
, (20)

where f is the noise-free signal. The expectation is empirically eval-
uated using Monte-Carlo simulations, but this time with 1000 differ-
ent noise realizations. The results are shown in Table 1. We see
that the performance depends on the signal type. For the piecewise
polynomial signal, the proposed method DEMBIT outperforms both
MDL and KICc, whereas for the other signal types KICc outper-
forms the other methods. As can be seen in Figure 3(c), the piece-
wise polynomial signal has a very sparse structure and this appears
to be the main reason why DEMBIT performs best. The sparse-
ness for the seismic signal (Figure 3(b)) and the chirp signal (Figure
3(a)) is smaller and KICc, which penalizes less than DEMBIT and
MDL, shows the best performance. Note, though, that the differ-
ences in performance for these signals are small (on the order of 1
dB) whereas for the piecewise polynomial signal, DEMBIT outper-
forms KICc by about 3.5 dB.

4. CONCLUDING REMARKS

In this paper we have derived a new approach for the denoising of
sparse signals using a penalized least squares criterion. Methods
have been derived for both known and unknown noise variances, giv-
ing rise to simple yet powerful denoising methods. We have studied
the performance of the methods using Monte-Carlo simulations and
compared them to previously known methods. Our conclusion is
that the proposed method, DEMBIT, performs best for cases where
the data structure is very sparse, and that its performance is not much
lower than that of other well-known methods when the data structure
has less sparsity.

Table 1. MSE (in dB) of the different denoised signals

Signal Denoising method
DEMBIT MDL KICc

Chirp -8.49 -7.75 -9.64
Seismic -24.31 -24.75 -25.22
Piecewise polynomial -22.36 -18.51 -18.94
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