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ABSTRACT

We consider a powerful iterative inference algorithm which
has recently appeared in the literature, see e.g. [1, 2, 3, 4, 5].
In this paper, we refer to this algorithm as iterative ”pseudo
likelihood”maximization (IPLFM) algorithm. We give a con-
nection between this algorithm and the problem of Bethe free
energy minimization and prove several important results con-
cerning its fixed points and its convergence properties.

Index Terms— MAP estimation, iterative methods, con-
vergence of numerical methods.

1. INTRODUCTION

In this paper, we consider the problem of inferring the value
of an unknown parameter Θ from an observation vector Y,
whenY also depends on a ”nuisance” parameter vectorX =
[X1, X2, . . . ,XN ]. In such a scenario, a direct computation of
the maximum a posteriori (MAP) estimate often turns out to
be a complex task. In order to circumvent this problem, pow-
erful numerical methods, enabling to iteratively compute the
MAP solution, have been proposed in the literature. For ex-
ample, the expectation-maximization (EM) algorithm [6] or
the family of gradient methods [7] are instances of such al-
gorithms. More recently, iterative estimation methods based
on factor graphs (FGs) and the belief-propagation (BP) algo-
rithm [8] have appeared in the literature, see e.g. [1, 2, 3]. Al-
though slightly different in their implementation, these meth-
ods have the common feature of computing a sequence of es-
timates {θ(n)}∞n=0 by increasing at each iteration a ”pseudo”
likelihood function (PLF); the latter likelihood function being
built by considering standard BP messages as a priori infor-
mation on the nuisance parameters. In this paper, we will
therefore refer to this kind of algorithm as iterative ”pseudo
likelihood function” maximization (IPLFM) algorithm.
In [3], the authors proposed to maximize the PLF by

means of the EM algorithm. Considering this particular im-
plementation in cycle-free FGs, they showed that if only one
EM iteration is performed, one recovers the standard imple-
mentation of the EM algorithm, proving as a by-product that
the fixed points of this particular IPLFM algorithm must be
stationary point of the true likelihood function. This conclu-
sion was later shown to be valid irrespective of the method

used to maximize the PLF in two parallel works [4, 5]: in
[4] this result was shown in the particular context of synchro-
nization problems whereas general FGs were considered in
[5]. In this contribution, we prove several important proper-
ties of the IPLFM algorithm for general FGs by placing the
MAP estimation problem in the more general framework of
Bethe free energy minimization1. In particular, we show that
i) the fixed points of the IPLFM algorithm must be station-
ary points of the (minimum) Bethe free energy of the system
[10]; ii) any fixed point of the IPLFM algorithm is also a
fixed point of the EM algorithm; iii) we formulate necessary
and sufficient conditions for local convergence of the IPLFM
algorithm. As a corollary, we show that the IPLFM algorithm
never converges to maxima of the Bethe free energy.

2. BETHE FREE ENERGY MINIMIZATION

In order to generalize the properties of the IPLFM algorithm
to general FGs, we will consider the general problem of Bethe
free energy minimization. Assume that

pΘ,X,Y(θ,x,y) =

M∏
a=1

ΨXVa
,Θ(xVa

, θ), (1)

where Va ⊂ {1, 2, . . . , N} andXVa
is a vectormade up of the

elements of X whose index is in Va. Let us consider the FG
associated to (1) where Θ is not a variable node but simply
a parameter of the factor nodes (i.e. only X1, . . . , XN are
variable nodes in the FG). If the FG is cycle free, it is well-
known [10] that

log pΘ,Y(θ,y) = −GΘ,Ba(xVa
),Bi(xi) (θ, b�

a(xVa
), b�

i (xi)) ,

where GΘ,Ba(xVa
),Bi(xi)(·) is the Bethe free energy associ-

ated to the FG and b�
a(xVa

) (resp. b�
i (xi)) are the beliefs com-

puted by the BP algorithm [8] at the factor (resp. variable)
nodes of the FG, i.e.

b�
a(xVa

) = γ−1
a ΨXVa

,Θ(xVa
, θ)

∏
i∈Va

mi→a(xi, θ) (2)

b�
i (xi) = γ−1

i

∏
a∈Pi

ma→i(xi, θ), (3)

1We also refer the interested reader to the independent parallel work [9]
which also states some results pertaining to cyclic FG.
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wherema→i(xi, θ) andmi→a(xi, θ) are the messages com-
puted by the BP algorithm, Pi is the set of factor nodes con-
nected to variable node i, and γa, γi are normalization factors.
In the cycle free case, we see that minimizing the Bethe free
energy with respect to Θ is equivalent to computing the MAP
estimate. In the sequel, we will therefore focus on the follow-
ing more general problem:

θ� = argmax
θ

LΘ(θ), (4)

where

LΘ(θ) = −GΘ,Ba(xVa
),Bi(xi) (θ, b�

a(xVa
), b�

i (xi)) . (5)

Problem (4) has the following interpretation: when the FG as-
sociated to (1) is cycle free, θ� is theMAP solution; otherwise
it is an approximation the MAP solution.

3. THE IPLFM ALGORITHM: PROPERTIES

In this section, we will derive several properties of the IPLFM
algorithm. We proceed in two steps. We first define the
”pseudo” likelihood function (PLF) and emphasize some of
its properties. Based on these results, we will then study the
convergence properties of the IPLFM algorithm.

3.1. PLF: Definition and Properties

Before giving a definition of the PLF, we need to define some
notations and concepts.

Definitions: A regionR of a FG is defined by a set of factor
nodes and the set of all variable nodes that are connected to
them. A covering set Ω is a set of regions such that all factor
nodes in the FG are included in one and only one region of the
set. A variable node i is said to be a boundary node if there
exists at least one factor node a such that a /∈ R and a ∈ Pi.

Notations: VR (resp. PR) is the set of index of variable nodes
(resp. factor nodes) belonging to region R; V B

R is the set of
index of the boundary variable nodes belonging to regionR.

Let Ω be a covering set of cycle-free regions. We define the
pseudo likelihood function associated to Ω as

GΩ
Θ,Θ′(θ, θ′) �

∑
R∈Ω

log
∑
xR

ΨXR,Θ(xR, θ)ΦXR,Θ′(xR, θ′),

(6)

where

ΨXR,Θ(xR, θ) �
∏

a∈PR

ΨXVa
,Θ(xVa

, θ), (7)

ΦXR,Θ′(xR, θ′) �
∏

i∈V B

R

∏
a∈Pi\PR

ma→i(xi, θ
′), (8)

i.e. ΨXR,Θ(xR, θ) is equal to the product of the factors be-
longing toR andΦXR,Θ(xR, θ) is equal to the product of the
messages entering the boundary variable nodes ofR.
Let us now prove some properties of the region-based free

energy which will later prove to be useful in the analysis of
the convergence of the IPLFM algorithm.

Property 3.1: If Θ′ = θ, we have

∇ΘLΘ (θ) = ∇ΘGΩ
Θ,Θ′(θ, θ). (9)

Proof: On the one hand, taking into account the expression of
b�
a(xVa

) and b�
i (xi) in (2), (3) and applying standard deriva-

tion rules, we obtain (see, e.g. [11]):

∇ΘLΘ (θ) = ∇ΘGΘ,Ba(xVa
),Bi(xi) (θ, b�

a(xVa
), b�

i (xi))

=

M∑
a=1

∑
xVa

b�
a(xVa

)∇Θ log ΨXVa
,Θ(xVa

, θ).

(10)

On the other hand, taking the derivative of (6) with respect to
Θ and using the fact that∇Θ log fΘ = ∇ΘfΘ

fΘ
, we get

∇ΘGΩ
Θ,Θ′(θ, θ′)

=
∑
R∈Ω

∑
xR

∇Θ

(
ΨXR,Θ(xR, θ)ΦXR,Θ′(xR, θ′)

)
∑

xR
ΨXR,Θ(xR, θ)ΦXR,Θ′(xR, θ′)

, (11)

=
∑
R∈Ω

∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇Θ log ΨXR,Θ(xR, θ),

(12)

=
∑
R∈Ω

∑
a∈PR

∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇Θ log ΨXVa
,Θ(xVa

, θ),

(13)

where

bXR,Θ,Θ′(xR, θ, θ′) �
ΨXR,Θ(xR, θ)ΦXR,Θ′(xR, θ′)∑
xR

ΨXR,Θ(xR, θ)ΦXR,Θ′(xR, θ′)
.

(14)

Now, since Ω is a covering set of regions, we have that∑
R∈Ω

∑
a∈PR

=
∑M

a=1. Moreover, since the regions are
cycle free, it can readily be shown starting from (14) and
using the definition of the BP message update rules [8] that

∑
xR∈X

xVa

R

bXR,Θ,Θ′(xR, θ, θ) = b�
a(xVa

), (15)

whereXxVa

R is the set of possible values forXR whenXVa
=

xVa
. Therefore, plugging (15) into (13) and comparing with

(10) we get (9). �

This first property of the PLF is very interesting since it states
that the Bethe free energy and the PLF have locally the same
first order behavior. As we will see in the next section, this
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property will reveal to be key in the characterization of the
fixed points of the IPLFM algorithm.

Property 3.2: The Hessian of LΘ(θ) may be expressed as

∇2
ΘLΘ(θ) = ∇2

ΘGΩ
Θ,Θ′(θ, θ) +∇Θ,Θ′GΩ

Θ,Θ′(θ, θ), (16)

where ∇2
ΘGΩ

Θ,Θ′(θ, θ) and ∇Θ,Θ′GΩ
Θ,Θ′(θ, θ) are defined in

(17) and (18) (see top of the next page).

Proof: Starting from (12), we have

∇2
ΘGΩ

Θ,Θ′(θ, θ′)

=
∑
R∈Ω

∑
xR

∇Θ log ΨXR,Θ(xR, θ)∇T
ΘbXR,Θ,Θ′(xR, θ, θ′)

+
∑
R∈Ω

∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇2
Θ log ΨXR,Θ(xR, θ).

(19)

Now, using the definition of bXR,Θ,Θ′(xR, θ, θ′) and the fact
that∇Θ log fΘ = ∇ΘfΘ

fΘ
, we obtain after some calculus

∇ΘbXR,Θ,Θ′(xR, θ, θ′)

= bXR,Θ,Θ′(xR, θ, θ′)
(
∇Θ log ΨXR,Θ(xR, θ)

−
∑
x
′

R

bXR,Θ,Θ′(x′R, θ, θ′)∇Θ log ΨXR,Θ(x′R, θ)
)
. (20)

Plugging (20) into (19), we get (17). Proceeding in the same
way, we can get similar expressions for ∇Θ,Θ′GΩ

Θ,Θ′(θ, θ)

and∇2
ΘLΘ(θ) and prove (16). �

4. CHARACTERIZATION OF THE CONVERGENCE
OF THE IPLFM ALGORITHM

In this section, we study the properties of the following itera-
tive algorithm:

θ(n+1) = argmax
θ

GΩ
Θ,Θ′(θ, θ(n)). (21)

It is easy to see that the definition of (21) includes the IPLFM
algorithms considered in [1, 2, 3]. Note also that (21) is re-
lated to the ”Hybrid-EM algorithm” considered in [5] when
all the regions in Ω only contain one factor node.

Let us now prove some interesting properties of (21):

Property 4.1: Let θf be a fixed point of (21). Then we have

∇ΘGΘ,Ba(xVa
),Bi(xi) (θf , b�

a(xVa
), b�

i (xi)) = 0. (22)

Proof: If θf is a fixed point, then we must have

∇ΘGΩ
Θ,Θ′(θf , θf ) = 0. (23)

Now, from (9) it also implies

∇ΘGΘ,Ba(xVa
),Bi(xi) (θf , b�

a(xVa
), b�

i (xi)) = 0, (24)

which proves the result. �

We see that property 4.1 gives a nice interpretation of the fixed
point of the IPLFM algorithm in terms of stationary point of
the Bethe free energy. Property 4.1 basically states that any
fixed point of the IPLFM algorithm must be stationary point
of the Bethe free energy. This feature is of course highly
desirable since any solution of (4) must also cancel the first
derivative of the Bethe free energy. Note that in the particu-
lar case of FGs without cycles, the Bethe free energy is equal
to − log pY,Θ(y, θ) and we therefore recover the result pre-
viously proved in [4, 5]. The next property relates the fixed
points of the IPLFM algorithm to those of the EM algorithm:

Property 4.2: Let ΓG denotes the set of fixed points of (21)
and let ΓEM denote the set of fixed points of the EM algo-
rithm2. Then, we have

ΓG ⊆ ΓEM . (25)

Proof:We must show that if θf is a fixed point of (21) then it
is also a fixed point of the EM algorithm. Now, any θf which
satisfies the two following sufficient conditions [11]:∑
R∈Ω

∑
xR

bXR,Θ,Θ′(xR, θf , θf )∇Θ log ΨXR,Θ(xR, θf ) = 0,

(26)∑
R∈Ω

∑
xR

bXR,Θ,Θ′(xR, θf , θf )∇2
Θ log ΨXR,Θ(xR, θf ) ≺ 0.

(27)

is a fixed point of the EM algorithm. From properties 3.1, 4.1
and (12), we know that the first condition is fulfilled for any
fixed point of (21). Let us show that any fixed point of (21)
also satisfies the second one. If θf is a fixed point of (21),
then

∇2
ΘGΩ

Θ,Θ′(θ, θ) ≺ 0. (28)

Now, we have

∇2
ΘGΩ

Θ,Θ′(θ, θ)

�
∑
R∈Ω

∑
xR

bXR,Θ(xR, θf )∇2
Θ log ΨXR,Θ(xR, θf ). (29)

since the last two terms in (17) form a definite positive ma-
trix. As a consequence, we see from (29) that (28) also im-
plies (27). �

Property 4.3: The IPLFM algorithm never locally converges
to minima ofLΘ(θ). Moreover, if a local maximumofLΘ(θ),
say θm , is a fixed point of (21), the algorithm locally con-
verges to it if and only if:

∇Θ,Θ′GΩ
Θ,Θ′(θm, θm) � ∇2

Θ GΩ
Θ,Θ′(θm, θm). (30)

2If the FG is cycle free, we refer to the standard EM algorithm [6]. When
the FG contains cycles, we consider the ”approximate EM algorithm” de-
scribed in [12], i.e., the E-step is performed by applying the BP algorithm on
the cyclic FG.
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∇2
ΘGΩ

Θ,Θ′(θ, θ′) =
∑
R∈Ω

(∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇2
Θ log ΨXR,Θ(xR, θ)

+
∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇Θ log ΨXR,Θ(xR, θ)∇T
Θ log ΨXR,Θ(xR, θ)

−
∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇Θ log ΨXR,Θ(xR, θ)
∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇T
Θ log ΨXR,Θ(xR, θ)

)
, (17)

∇Θ,Θ′GΩ
Θ,Θ′(θ, θ′) =

∑
R∈Ω

(∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇Θ log ΨXR,Θ(xR, θ)∇T
Θ′ log ΦXR,Θ′(xR, θ′)

−
∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇Θ log ΨXR,Θ(xR, θ)
∑
xR

bXR,Θ,Θ′(xR, θ, θ′)∇T
Θ′ log ΦXR,Θ′(xR, θ′)

)
. (18)

Proof: In order to prove property 4.3, let us consider the fol-
lowing condition of convergence:

−I ≺ RG(θf ) ≺ I, (31)

where I is the unitary matrix and (see [13])

RG(θf ) =
(
−∇2

ΘGΩ
Θ,Θ′(θf , θf )

)−1
∇Θ,Θ′GΩ

Θ,Θ′(θf , θf),

(32)

is the (local) rate of convergence of (21) around θf . We will
show that (31) is never satisfied for minima whereas it is sat-
isfied for maxima if and only if (30) is satisfied.
Taking into account that ∇2

Θ GΩ
Θ,Θ′(θf , θf ) ≺ 0 for any

fixed point and using (32) and (16), (31) may be equivalently
rewritten as

2∇2
Θ GΩ

Θ,Θ′(θf , θf ) ≺ ∇2
ΘLΘ(θf ) ≺ 0. (33)

Based on this expression we can draw the two following con-
clusions. First, if θf is a minimum of LΘ(θ), then the IPLFM
algorithm locally diverges from θf . Indeed, if θf corresponds
to a minimum, it implies ∇2

ΘLΘ(θf ) � 0. Therefore, the
second inequality in (33) is violated and the algorithm does
not converge to θf . On the other hand, if θf corresponds to a
maximum of LΘ(θ),∇2

ΘLΘ(θf ) ≺ 0 and the second inequal-
ity in (33) is always satisfied. The (local) convergence to θf

is therefore ensured if and only if

2∇2
Θ GΩ

Θ,Θ′(θf , θf ) ≺ ∇2
Θ LΘ(θf ) (34)

which is equivalent to (30) by using (16). �

In property 4.1, we saw that some fixed points of the
IPLFM algorithm can possibly correspond to maxima of the
the Bethe free energy. From property 4.3, we see that even if
a maximum of the Bethe free energy is a fixed point of (21),
the algorithm will not converge to it. Moreover, property 4.3
provides necessary and sufficient conditions (30) for conver-
gence to the minima of the Bethe free energy. This condition
is however difficult to check in practice since it basically re-
quires the complex task of evaluating∇2

Θ LΘ(θf ) (see (34)).

However, it gives an interesting insight of when the IPLFM
algorithm is likely to converge by looking at the expression
of∇2

ΘGΩ
Θ,Θ′(θ, θ′) and∇Θ,Θ′GΩ

Θ,Θ′(θ, θ′) in (17), (18).
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