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ABSTRACT

The estimation of the frequency of a complex exponential is
relevant to many fields and has been the subject of a signif-
icant amount of research. In this paper, we present a novel
complex exponential frequency estimation algorithm that is
based on the iterative interpolation strategy of Aboutanios and
Mulgrew. The A&M algorithm uses two Fourier coefficients
and has been shown to reach, in two iterations, a variance
that is 0.063dB above the Cramer-Rao Bound. It, however,
requires the calculation of two additional DFT coefficients at
each iteration. The new algorithm is computationally sim-
pler as it exploits the standard DFT coefficients at the first
iteration. Theoretical analysis and simulation results are pre-
sented that demonstrate that the new algorithm maintains the
same performance as the A&M estimator.

Index Terms— Frequency estimation, Iterative estima-
tion, Interpolation, Complex exponential.

1. INTRODUCTION

The problem of estimating the frequency of a sinusoidal sig-
nal in noise is of prime importance in many applications such
as radar, sonar and biomedical instrumentation to name a few.
Consequently, this problem has receivedmuch attention in the
literature, [1] and [2]. Of the characteristics that are desired
for an estimation algorithm, small constant variance and low
computational complexity are of prime importance. These
two are usually in direct competition with one another. Many
approaches have been proposed for the frequency estimation
problem. Time-domain methods are computationally simple,
but usually are efficient only at high signal to noise ratios
(SNR) and suffer from a high SNR threshold below which the
algorithm becomes useless as its variance increases rapidly.
FFT-based algorithms such as those in [3, 4, 5, 6] enjoy a rel-
atively low computational complexity, due to their reliance on
the FFT, as well as good performance at low SNRs.
We consider the following signal model,

x[k] = s[k] + w[k], k = 0 . . .N − 1, (1)

where the signal of interest s[n] is an exponential of the form

s[k] = Ae j2πk f+φ. (2)

Here A is the signal amplitude, θ the initial phase and f the
signal frequency normalized with respect to the sampling fre-
quency. Thus f ∈ [−0.5, 0.5]. The noise terms, w[k], are
assumed to be zero mean, complex additive white Gaussian
noise with variance σ2. The SNR is given by ρ = A2

σ2
. The

problem is then to estimate f from a block of N samples,
whith the other quantities treated as nuisance parameters.
It is well known that the maximum likelihood estimator

of the frequency is the maximiser of the periodogram, [7],

f̂ML = argmax
λ
{Y(λ)} (3)

where

Y(λ) =

∣∣∣∣∣∣∣
N−1∑
k=0
x[k]e− j2πkλ

∣∣∣∣∣∣∣
2

.

The Cramer-Rao Bound (CRB) of the frequency estimates
was derived in [7] and is given by

σ2f =
6

(2π)2ρN(N2 − 1) . (4)

The heavy computational cost of the maximisation step of
equation (3) has led to research into simple and efficient alter-
natives. These estimators usually employ a two-stage strat-
egy consisting of a coarse followed by a fine search, [7] and
[8]. The coarse search returns the bin number with the largest
magnitude from the L-point FFT, [5], where the FFT length
L is not necessarily equal to N as zero-padding may be em-
ployed.
The resolution of the coarse search is limited to 1/L. Per-

formance improvements can be obtained by increasing L at
the expense of a heavier computational load. An alternative
approach is to use a fine estimation stage. Many such strate-
gies have been proposed in the literature. For instance, [9] and
[5] propose algorithms that rely on a sequential binary search
for the true maximum. Another method that has received sig-
nificant attention is interpolation-based estimation, where a
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number of bins around the highest bin are used to interpo-
late for the true maximum, [7], [3], and [6]. Although most
of these algorithms get quite close to the CRB, some do not
have a constant variance as a function of the true signal fre-
quency. This is certainly the case for Quinn’s algorithms, and
their performance is worst when f coincides with the bin cen-
tre, [6]. In contrast, the interpolators presented in [6], which
we denote as the A&M estimators, are suitable for iterative
implementation which then endows them with a constant per-
formance that is independent of the true frequency and only
1.0147 times the asymptotic CRB (ACRB). This is, however,
achieved at the expense of increased computational cost as a
result of the iterative procedure. In this paper, we present a
new method that reduces the computational complexity of the
A&M algorithms while maintaining the same performance.
The paper is organized as follows: In the following sec-

tion we review the Quinn and A&M algorithms. In section 3
we present the new algorithm and verify its performance in 4.
Finally, some conclusions are given in 5.

2. INTERPOLATION ALGORITHMS

Let the index returned by the maximum bin search (MBS) be
denoted by m̂N , where the subscript N denotes the dependence
of the estimate m̂ on N. It was shown in [6] that, as N → ∞,

δN = m̂N − N f ∈ [−0.5, 0.5] a.s. (5)

Thus, the MBS returns the true maximum index mN almost
surely (a.s.). In the following we drop the subscript N for no-
tational simplicity. Now the task becomes that of estimating
δ. Consider the DFT coefficients in the vicinity of the true
frequency and let Xp be the coefficient corresponding to the
index m̂ + p. From [6] we have that

Xp = b
δ

δ − p +Wp + O(N−2) (6)

whereWp is the DFT coefficient of the noise and

b = −Nejθ 1 + e
j2πδ

j2πδ

A general iterative estimation algorithm is shown in table
1. The interpolation function h(δ) is implemented on a set
of DFT coefficients S = {Xp}. Specific interpolation algo-
rithms differ in the their choice of S, h(δ), and number of
iterations Q. An iterative interpolation function satisfying the
fixed point theorem will converge to its fixed point, δ0, where
δ0 satisfies h(δ0) = δ0. The variance of the iterative estimates
also converges to its value at δ0, [6]. In the following subsec-
tions we review Quinn’s algorithm and the A&M estimator.

2.1. Quinn’s Estimator

Quinn, in [3], proposed estimating δ by interpolating on the
maximum and either of the two coefficients adjacent to it. The

Table 1. Iterative Frequency Estimation by Interpolation on
Fourier Coefficients Algorithm

Let X = FFT (x) and Y(n) = |X(n)|2
Let m̂ = argmaxn{Y(n)}
Set δ̂0 = 0
Loop: for each i from 1 to Q do

Xp =
∑N−1
k=0 x(k)e− j2πk

m+δ̂i−1+p
N

δ̂i = δ̂i−1 + h(δ̂i−1)
Finally f̂ = m̂+δ̂Q

N

estimation function is given by

hp(δ) = −p
αp

1 − αp
(7)

where
αp = Re

{
Xp
X0

}
, for p = ±1. (8)

Thus Quinn’s algorithm obtains two estimates of δ and
chooses the one with the better SNR. The ratio of the asymp-
totic variance to the ACRB of the resulting estimator has a
maximum of π2/3 = 3.2899 at δ = 0 and a minimum of
π4/96 = 1.0147 at δ = ±1/2. Since the function h(δ) has a
fixed point at δ0 = 0, the point with the worst variance, an
iterative application of the algorithm results in a degradation
in estimation performance, [6].

2.2. The A&M Estimators

The drawback of Quinn’s estimator is that its worst variance
is at the fixed point of its estimation function. Two alternative
interpolators were proposed in [6]. These employ a different
set of DFT coefficients (precisely those at the edges of the
maximum bin) and were shown to have their lowest variance
at the fixed point δ0 = 0. Thus, they are amenable to iterative
implementation. The estimation functions are given by

δ̂ = h(δ) = 1
2Re
{
X0.5+X−0.5
X0.5−X−0.5

}
, for algorithm 1

and
δ̂ = h(δ) = 1

2
|X0.5 |−|X−0.5 |
|X0.5 |+|X−0.5 | , for algorithm 2

Both of these estimators have the same ratio of the asymptotic
variance to the ACRB given below:

R(δ) =
π4

6

(
δ2 − 0.25

)2 (
4δ2 + 1

)
cos2(πδ)

(9)

The ratio R(δ) has its minimum of π4/96 = 1.0147 for δ = 0.
Since δ0 = 0 is also the fixed point of the function, the iter-
ative implementation of the estimators results in an improve-
ment in the estimation variance. It was shown in [6] that
Q = 2 is sufficient to achieve a variance of the same order
as the CRB for all δ ∈ [−0.5, 0.5].
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3. MODIFIED INTERPOLATION ALGORITHM

The A&M estimators achieve an improvement in perfor-
mance over Quinn’s interpolator at the expense of an increase
in the computational cost. At each iteration, two additional
DFT coefficients at the edges of the maximum bin must be
calculated. In time-critical DSP applications, a reduction
in the computational cost of the estimators becomes very
important. Thus, we present here a modified algorithm that
maintains the same performance as the A&M estimators but
with a reduced computational cost.
The new estimator is shown in table 2. The algorithm

is initialised using the MBS stage. Following this, the first
iteration is extracted from the loop and modified to avoid the
calculation of the two additional DFT coefficients required by
the A&M algorithms. A new estimation function that uses the
same set of coefficients as Quinn’s algorithm is introduced.
Like Quinn’s estimator, two estimates for δ are obtained and
a decision rule is needed to select the one with the better SNR.
One possible rule is to compare the two coefficients either side
of the maximum, but this has been shown in [4] to perform
poorly as |δ| → 0. Thus, we consider instead

rl = Re
{
XlX∗0
}

≈ Re
{
b
δ

δ − l b
∗
}
= |b|2 δ

δ − l , l = ±1

Now we see that r1 ≤ 0 ≤ r−1 for 0 ≤ δ ≤ 0.5, while the re-
verse is true for −0.5 ≤ δ ≤ 0. This justifies the decision rule
used in table 2. Now looking at h(δ), consider the noiseless
case and substitute the expressions for Xm̂+p,

h(δ) = pRe
{

Xm̂+p
Xm̂+p − Xm̂

}

≈ pRe

⎧⎪⎪⎨⎪⎪⎩
b δ
δ−p

b δ
δ−p − b

⎫⎪⎪⎬⎪⎪⎭ = δ.
Hence, h(δ) can be used as an estimator for δ. As in [6], we
take the real part to ensure the result is real. This has the side
benefit that the variance of the estimates is improved by 3dB.

3.1. Analysis

In this section we derive the asymptotic performance of the
new estimator. The detailed analysis will not be given due
to the lack of space. The interpolation function proposed
here has a similar form to those in [3] and [6]. Thus, similar
asymptotic properties would be expected. In fact its asymp-
totic performance holds under the relaxed noise conditions
given in [6]. Now including the noise terms Wp in the inter-
polation function, we get after some manipulations,

δ̂ = pRe
{

Xm̂+p
Xm̂+p − Xm̂

}

= Re

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ + (δ − p)Wpb
1 + δ−pp

Wp−W0
b

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Table 2. Modified Iterative Frequency Estimation by Interpo-
lation on Fourier Coefficients Algorithm

Let X = FFT (x) and Y(n) = |X(n)|2
Let m̂ = argmaxn{Y(n)}
Let rl = Re

{
XlX∗0
}
, l = ±1

if r1 < r−1
then p = 1, α = −0.5
else p = −1, α = 0.5

Set δ̂1 = pRe
{

Xm̂+p
Xm̂+p−Xm̂

}
Loop: for each i from 2 to Q do

Xl =
∑N−1
k=0 x(k)e− j2πk

m+δ̂i−1+l+α
N , l = 0, p

δ̂i = δ̂i−1 + pRe
{

Xm̂+p
Xm̂+p−Xm̂

}
Finally f̂ = m̂+δ̂Q+α

N

The termsWp are O
(√
N lnN

)
whereas b is O(N), [6]. Thus,

Wp/b = O
(
N−

1
2
√
lnN
)
. Using the fact that, for large N,

1
1+x ≈ 1 − x + o(x2) yields

δ̂ = Re
{[
δ + (δ − p)Wp

b

] [
1 − δ − p

p
Wp −W0
b

]}

= δ + (δ − p)Re
{
Wp

b

}
− δδ − p

p
Re
{
Wp −W0
b

}

+O(N−1 lnN).

Now taking the variance of the error (δ̂ − δ) we get

var
[
δ̂ − δ

]
=

(δ − p)2
|b|2 var

[
Re
{
Wp
}]

+
δ2(δ − p)2

|b|2 var
[
Re
{
Wp −W0

}]

A convenient metric to use is the ratio of the estimator vari-
ance to the ACRB. Noting that var

[
Re
{
Wp
}]
=
Nσ2
2 , and sub-

stituting the expression for b, This ratio becomes

R(δ) =
π4δ2

3 sin2(πδ)
(1 − |δ|)2

{
δ2 + (1 − |δ|)2

}

where in the last expression, the relationship between the sign
of δ and the value of p was used.
The above expression is in fact identical to that of Quinn’s

algorithm. This is not surprising as the two interpolation ex-
pressions are quite similar. Now, recall that Quinn’s algorithm
cannot be implemented iteratively due to the function having
maximum variance at its fixed point. Therefore, the proposed
algorithm shifts the fixed point of the procedure to the point
where the minimum variance occurs by incorporating the pa-
rameter α into the DFT coefficients, see table 2. In fact it is
straightforward to show, as was done above, that this makes
the asymptotic properties of the second iteration identical to
those of the A&M algorithm and therefore the new iterative
procedure converges in the same way as the A&M estimator.
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Fig. 1. Plot of the standard deviation of the frequency error as
a function of SNR. 10000 Monte Carlo runs were used.

4. SIMULATION RESULTS

The new algorithm was simulated alongside the A&M and
Quinn estimators and the results for one and two iterations
are shown in figs. 1 and 2. N = 1024 samples were used.
Fig. 1 shows the performance as a function of the SNR. The
normalised frequencywas selected randomly following a uni-
form distribution over the range [−0.5, 0.5]. Firstly, note that
the proposed algorithm maintains an identical performance
as the A&M estimator after two iterations. Fruthermore, al-
though all three algorithms have similar performances at the
first iteration (with minor differences at low SNR and the
A&M performing best), the proposed and A&M algorithms
improve at the second iteration whereas Quinn’s clearly dete-
riorates. In fact we see a difference of about 6dB between the
curves at Q = 2. Fig.2 sheds some light on the algorithms’
behaviour as it shows the peformance against the offset from
the bin centre. We see that whereas all of the interpolators
start with a frequency dependent performance, the variance
is lowest at the fixed point for the proposed and A&M algo-
rithms, whereas it is worst for Quinn’s. The curves for the
second iteration confirm the expected performance.
Despite having an identical peformance to the A&M esti-

mator, the proposed algorithm saves on the calculation of two
DFT coefficients. This amounts to a saving of 2N complex
multiplications and 2N − 2 complex additions per estimate
which, for N = 1024, is about 4096 operations. This is a
significant saving in real-time and time critical applications.

5. CONCLUSIONS

In this paper we presented a new iterative frequency estima-
tion algorithm that maintains the same performance as the
A&M estimator while saving on the required computational
load. This is achieved by avoiding the calculation of two new
DFT coefficients in the first iteration and redesigning the al-
gorithm to take advantage of the already available FFT bins.
Analysis and simulation results were presented to verify the
algorithm performance.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

4

Offset from bin centre, δ

R
at

io
 o

f t
he

 e
st

im
at

io
n 

va
ria

nc
e 

to
 th

e 
A

C
R

B

A&M, Q=1
A&M, Q=2
Quinn, Q=1
Quinn, Q=2
New, Q=1
New, Q=2

Fig. 2. Plot of the ratio of the estimation variance to the
ACRB. 5000 Monte Carlo runs were used.
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