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ABSTRACT

In this paper, we present two density estimation methods based on
constrained expectation-maximization (EM) algorithm. We pro-
pose a penalty-based maximum-entropy expectation-maximization
(MEEM) algorithm to obtain a smooth estimate of the density
function. We further propose an attraction-repulsion expectation-
maximization (AREM) algorithm for density estimation in order to
determine equilibrium between over-smoothing and over-fitting of
the estimated density function. Computer simulation results are used
to show the effectiveness of the proposed constrained expectation-
maximization algorithms in image reconstruction and sensor field
estimation from randomly scattered samples.

Index Terms— Gaussian mixture model (GMM), maximum
entropy penalty, Gibbs density function, expectation-maximization
(EM), image reconstruction, sensor field estimation.

1. INTRODUCTION

Estimation of the probability density function (pdf) from samples
has been the topic of an intense research effort for several decades.
The Parzen window method [1] is one of the most powerful tech-
niques for density estimation. It relies on the use of narrow ker-
nels (usually low-variance Gaussian functions) at each sample. This
method has been shown to converge to the true density function as
the number of samples increases. However, the computational bur-
den of this approach also increases rapidly as the number of sam-
ples rises. Therefore, much research has been devoted to reduce the
computational complexity by approximating the result of the Parzen
window method. One of the popular methods used is obtained by
minimizing the integrated squared-error (ISE) between the Parzen
window method and an approximation represented by a linear com-
bination of a much smaller number of kernel functions with arbitrary
variance. The limitation of ISE-based solutions is that they suffer
from a degeneracy problem [2] and do not fully utilize the sample
information as the number of samples increases. Moreover, ISE-
based methods are generally used to determine optimal weights used
in the linear combination. Selection of the mean and variance of the
kernel functions is accomplished by using the K-means algorithm,
which can be viewed as a hard limiting case of the Expectation-
Maximization algorithm (EM) [3]. The EM algorithm offers a very
effective iterative method for estimating the model parameters in-
cluding the weight, mean and covariance matrix of the kernel func-
tions. In this paper, we propose a maximum-entropy expectation
maximization (MEEM) algorithm. The MEEM algorithm provides
a smooth estimate of the density function by using a maximum en-
tropy penalty as a constraint and thus avoiding the well-known over-

fitting problem. We therefore propose a different approach to den-
sity estimation by introducing the attraction-repulsion expectation-
maximization (AREM) algorithm which aims to achieve a balance
between over-fitting and over-smoothing. We use the Gibbs and
inverse-Gibbs density functions to model the attraction and repul-
sion penalties, respectively.

The paper is organized as follows: The MEEM and AREM algo-
rithms are introduced in Sections 2 and 3, respectively. Experimental
results are presented in Section 4. In Section 5, we provide a brief
summary and conclusions.

2. MAXIMUM ENTROPY EXPECTATION
MAXIMIZATION ALGORITHM

A probability density function can be expressed by K Gaussian mix-
ture,

f̂(x) =
K∑

k=1

αkG (x − mk,Ck) , (1)

where mk is center of a Gaussian function, Ck is a covariance ma-
trix of kth function and αk is the weight for each center. The condi-
tions for weights are

∑K
i=1 αi = 1, αi > 0 to maintain the property

of pdf. The Gaussian function is given as

G (x − mk,Ck) =

exp

{
− (x−mk)T C−1

k
(x−mk)

2

}
(2π)D/2|Ck|1/2

. (2)

The logarithm of the likelihood function for the given Gaussian mix-
ture parameters that has N observations can be written as,

LL (θ) =
N∑

n=1

log
K∑

k=1

αkG (xn − mk,Ck) (3)

using (1) and (2) where xn is nth sample and θ is a set of parameters
(the weights, centers and covariances) to be estimated.

The entropy term is added in order to avoid degeneracy problem.
Here we use Renyi’s quadratic entropy measure [4],

H(θ) = − log

K∑
i=1

K∑
j=1

αiαjG (mi − mj ,Ci + Cj) (4)

We therefore form an augmented likelihood function LME param-
eterized by a positive scalar ν for simultaneously maximizing the
entropy and the likelihood using (3) and (4),

LME (θ, ν) =LL (θ) + νH (θ) . (5)
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We note that the EM algorithm here we use is a simple expansion
of the lower bound maximization method appears in [5], which con-
verges to the maximum point of the augmented likelihood in (5).

The expectation step of the EM algorithm can be separated into
two terms, one is the expectation related with likelihood and the
other is the expectation related with the entropy penalty,

pt
L (k, n) = αkG(xn−mk,Ck)∑K

l=1 αlG(xn−ml,Cl)
(6)

pt
E (k, l) = αkαlG(mk−ml,Ck+Cl)∑K

m=1
∑K

n=1 αmαnG(mm−mn,Cm+Cn)
(7)

where L denotes the likelihood function, E denotes the entropy
penalty and t denotes the number of iteration.

The Jensen’s inequality is applied to find the new lower bound
βt

ME (θ, ν) of the likelihood functions using eqs. (6) and (7). There-
fore, The lower bound function βt

L (θ) for the likelihood function
LL (θ) can be derived as

βt
L (θ) =

N∑
n=1

K∑
k=1

pt
L (k, n) log

αkG (xn − mk,Ck)

pt
L (k, n)

.

The lower bound for the entropy term βt
E (θ)

βt
E (θ)

= −
K∑

k=1

K∑
l=1

pt
E (k, l) log

(
αkαlG (mk − ml,Ck + Cl)

pi
E (k, l)

)
.

Therefore, the lower bound βi
ME(θ, ν) which combines two lower

bounds is

βt
ME (θ, ν) =βt

L (θ) + νβt
E (θ) . (8)

Now we have the lower bound function, the new estimates of
the parameters are easily calculated by setting the derivatives of
βt (θ, ν) with respect to each parameters to zero. The update equa-
tion for mean vector is,

mt+1
k =

(
N∑

n=1

pt
L (k, n)C−1

k

− 2ν

K∑
l=1,l�=k

pt
E (k, l) (Ck + Cl)

−1

)−1

(
N∑

n=1

pt
L (k, n)C−1

k xn

− 2ν

K∑
l=1,l�=k

pt
E (k, l) (Ck + Cl)

−1 ml

)
.

(9)

we use soft-max function[6] for weight in order to consider the
weight constraint. Thus αt+1

k is ,

αt+1
k =

∑N
n=1 pt

L(k, n) − 2ν
∑K

l=1 pt
E(k, l)

N − 2ν
.

However, in covariance case we cannot solve directly because of the
existence of inverse matrix appears in the derivative. By Cauchy-
Schwartz inequality we can get,

{G (ml − mm;Cl + Cm)}2

≤ G (0, 2Cl) G (0, 2Cm) .
(10)

We can derive new lower bound {βt
E(θ, ν)}C from βt

E(θ) using
(10). Therefore, the covariance Ct+1

k is

Ct+1
k =

∑N
n=1 pt

L(k, n)(xn − mk)(xn − mk)T∑N
n=1 pt

L(k, n) − ν
∑K

l=1 pt
E (k, l)

.

The equations for new parameter estimation show that the proposed
algorithm requires slight more computational burden over conven-
tional EM algorithm because K << N and moreover most of in-
verse matrix used in maximization steps is also required for the con-
ventional expectation step in (6).

However, the MEEM algorithm only considers over-fitting prob-
lem. In next section, we present an EM based density estimation
algorithm which considers over-fitting and over-smooth.

3. ATTRACTION REPULSION EXPECTATION
MAXIMIZATION ALGORITHM

In choosing a proper penalty for quantizing both attraction and re-
pulsion, the Gibbs distribution provides a useful representation. A
Gibbs distribution can be shown

g(x) =
1

Z
exp

{
−E(x)

T

}
(11)

where Z is normalizing constant and T is temperature. Since Gaus-
sian mixture model contains covariance matrix, we can use Maha-
lanobis distance [7] measure for the energy function. Thus, the en-
ergy function on some distance x with kth covariance matrix Ck

is

Ek(x) =
1

2
xT C−1

k x . (12)

Therefore, we plug (12) into (11) then we get Gibbs distribution
gA

k (x) induced by kth covariance matrix

gk(x) =
1

C0
k

√
T

exp

{
−Ek(x)

T

}

where C0
k = (2π)D/2|Ck|1/2 .

However, We want to estimate the parameters by minimizing
the effect of other centers with considering bidirectional way, so we
introduce the inverse Gibbs density where the energy function is,

ER
k (x) = −1

2
xT C−1

k x . (13)

The inverse Gibbs distribution function can be expressed as using
(13) and (11),

gR
k (x) =

{
C0

kCN

√
TR exp

{
−ER

k (x)

TR

}
, ER

k (x) ≥ −DTH

0, ER
k (x) < −DTH

which truncated according to some threshold DTH and the constant
CN is a normalizing constant

CN =

(∫
ER

k
(x)≥−DT H

C0
k

√
TR exp

{
−ER

k (x)

TR

}
dx

)−1

.

Since the energy function is defined on covariance matrix, one Gibbs
density function cannot describe a system properly. We therefore
introduce the Gibbs mixture model with K Gibbs and inverse Gibbs
mixture

gA/R(x) =
K∑

k=1

αkg
A/R
k (x)

3690



where the weight αk also keeps the condition as the MEEM case to
maintain the property of probability.

Now, we have formed penalty functions using Gibbs and in-
verse Gibbs density function defined on the distance between cen-
ters. Given a distance, we already know the two centers. The prob-
ability that a given distance x is originated from kth center is αk.
Therefore the logarithm of the likelihood of penalties for θ can be
written as

LA/R(θ) = −
K∑

i=1

log αi

K∑
j=1

αjg
A/R
j (mi − mj) (14)

where minus signs are added in order to estimate the parameter by
minimizing the effect of other centers.

Now we have the logarithm of the penalty function for the Gibbs
distribution and inverse Gibbs distribution to find equilibrium be-
tween two quantities, the attraction and the repulsion in (14). There-
fore an augmented likelihood function LAR(θ) is

LAR(θ) = LL(θ) + LA(θ) + LR(θ) . (15)

The augmented likelihood function (15) can be solved by the
EM algorithm. The expectation of t step for the EM algorithm can
be separated into three terms. They are for likelihood, attraction and
repulsion. The EM steps for likelihood is same as the MEEM case.
The expectations for the penalties are,

pt
A/R(i, j) =

αiαjg
A/R
j (mi − mj)∑K

m=1

∑K
n=1 αmαng

A/R
m (mn − mm)

.

The lower bound βt
A(θ) for attraction and βt

R(θ) for repulsion by
Jensen’s inequality is

βt
A/R(θ) = −

K∑
i=1

K∑
j=1

pt
A/R(i, j) log

αiαjg
A/R
j (mi − mj)

pt
A/R(i, j)

.

Hence, the lower bound βt
AR(θ) for the augmented likelihood func-

tion LAR(θ) is,

βt
AR(θ) = βt

L(θ) + βt
A(θ) + βt

R(θ) . (16)

The new estimates of the parameters are easily calculated by
setting the derivatives of βt

AR(θ) with respect to each parameters to
zero. The update equation for mean mt+1

k is

mt+1
k =

[{
N∑

n=1

pt
L(k, n) +

K∑
i=1

pAR
t (i, k)

}
C−1

k

+

K∑
i=1

pAR
t (k, i)C−1

i

]−1

[
C−1

k

{
N∑

n=1

pt
L(k, n)xn +

K∑
i=1

pAR
t (i, k)mi

}

+
K∑

i=1

C−1
i pAR

t (k, i)mi

]
.

where pAR
t (i, j) is,

pAR
t (i, j) =

pt
A(i, j)

TA
− pt

R(i, j)

TR
(17)

Table 1. SNR comparison of algorithm for image reconstruction

Algorithm SNR (dB)

70% sampled image 5.166dB
HMEKDE 16.026dB

Conventional EM 23.077dB
MEEM 23.198dB
AREM 25.843dB

The equilibrium between over-fitting and over-smooth can be
achieved by adjust the temperature TA and TR in (17). The newly
estimated covariance Ct+1

k is,

Ct+1
k =

{
N∑

n=1

pt
L(k, n)(xn − mk)(xn − mk)T

+
K∑

i=1

pAR
t (i, k)(mi − mk)(mi − mk)T

}
{

N∑
n=1

pt
L(k, n) +

K∑
i=1

pAR
t (i, k)

}−1

.

The update equation for αt+1
k using soft-max function is,

αt+1
k =

1

N − 4

{
N∑

n=1

pt
L(k, n)

−
K∑

i=1

{
pt

A(i, k) + pt
A(k, i) + pt

R(i, k) + pt
R(k, i)

}}
.

Those equations forms the closed form update equation for EM
algorithm, therefore the parameters can be estimated iteratively.

4. EXPERIMENTAL RESULTS

We apply our algorithms and other conventional methods to a im-
age reconstruction problem from samples. For experiment, we use
32 × 32 image selected from original 256 × 256 gray Lena image
which shown in fig. 1(a). We use 70% samples and 49 centers.
The sampled image is shown in Fig. 1(b). We use density model
(L, i, j) [8] where L is intensity value of the given location (i, j).
Here we compare the result of the proposed algorithm with conven-
tional density estimation algorithm appears in [2]. We can estimate
the intensity value of given location (i, j) using expectation operator
of marginal density distribution function. The reconstructed images
by various algorithm are shown in fig 1(c)∼(f) and the signal to noise
ratio of the results is given in table 1. We can observe that the bright
hair (right side of the image) is properly smoothed than other algo-
rithm.

Another application for the proposed algorithms is sensor field
estimation. The density function of given field can be estimated
from randomly scattered sensors. For the experiment, we generated
a 256 × 256 polynomial surfaces and use 2% of the original field
by random sampling. The original field is shown in Fig. 2 (a) and
the sampled field is shown in Fig. 2(b). We also use 49 centers for
experiment except HMEKDE which cannot determine the number
of centers. The estimation results are given in figures 2(c)∼(f). The
SNR results are given in table 2.
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(a) Selected image (b) Sampled 70%

(c) HMEKDE (d) EM

(e) MEEM (f) AREM

Fig. 1. Comparison of density estimation for image reconstruction
from randomly sampled image.

(a) Original (b) Sampled 2%

(c) HMEKDE (d) Conventional EM

(e) MEEM (f) AREM

Fig. 2. Comparison of the sensor field estimation from randomly
sampled scattered sensor networks.

Table 2. SNR comparison of algorithm for sensor field estimation

Algorithm SNR (dB)

2% sampled image 0.092dB
HMEKDE 23.053dB

Conventional EM 40.921dB
MEEM 40.958dB
AREM 41.206dB

5. CONCLUSION

In this paper, we develop two new algorithms for density estima-
tion using a penalty-based solution to the expectation-maximization
(EM) algorithm with maximum entropy and Gibbs, inverse Gibbs
penalties. The proposed maximum-entropy expectation-maximization
(MEEM) algorithm relies on a maximum entropy penalty which pro-
vides an iterative method to obtain a smooth estimate of the density
function. Whereas, the proposed attractive-repulsive expectation-
maximization (AREM) algorithm aims to achieve a balance be-
tween over-smoothing and over-fitting by reaching equilibrium
between attraction and repulsion penalties characterized by Gibbs
and inverse-Gibbs densities, respectively. The simulation results us-
ing the proposed algorithms show superior performance compared
to traditional density estimation methods for image reconstruction
and sensor field estimation from randomly scattered samples.
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