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ABSTRACT
An interesting but apparently forgotten auto-regressive
moving-average (ARMA) parameter estimation method, in-
troduced by one of us in 1984, and refined later on by oth-
ers, is revisited. In the process, we provide a new simpler
derivation of the method as well as an enhanced version of
its cepstrum-based step. We argue that this method has an
appealing advantage over Durbin’s method, which is proba-
bly the most frequently used non-iterative method for ARMA
parameter estimation.

Index Terms— ARMA, cepstrum, Durbin, LAST

1. INTRODUCTION

Estimating the parameters of auto-regressive moving-average
(ARMA) sequences is a fundamental problem in signal pro-
cessing, econometrics and statistics, particularly in spectral
estimation and in time series analysis and forecasting [1, 2,
3, 4]. Of the many methods proposed for solving this estima-
tion problem in the last sixty years or so, only a few ones have
survived the ”test of time”. Durbin’s method (DU) introduced
in 1959 (see [5]), is one of these successful methods: DU has
the appeal of conceptual and computational simplicity as well
as of reasonable statistical performance, and it has been in-
cluded in the most popular scientific software packages, such
as Matlab (see, e.g. [6]).
Another method for ARMA parameter estimation was in-

troduced in 1984 by one of us [7] and subsequently refined
two years later in [8]. The derivation in [7][8] was based
on the maximum entropy principle, which might not appeal
to every potential user. Here we present a new derivation of
LAST that is based only on simple basic facts. The original
method in [7, 8] used a cepstrum estimate [9] that does not
appear to have good statistical properties in small-or medium-
size samples. Here we make use of an enhanced cepstrum
estimation method that works well not only in large samples
but also in samples of practical lengths. Finally the advan-
tage of the method over other ARMA parameter estimation
methods, such as DU, was not made clear in [7, 8]. Here we
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provide evidence that LAST does not suffer from the problem
that affects DU.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a univariate real-valued ARMA sequence,
{y (t)}t=1,2,..., that satisfies the equation:

A
(
z−1

)
y (t) = B

(
z−1

)
e (t) (1)

where z−1 denotes the unit delay operator, A
(
z−1

)
as well

as B
(
z−1

)
are monic polynomials in z−1, A

(
z−1

)
= 1 +

a1z
−1 + ... + anz−n, B

(
z−1

)
= 1 + b1z

−1 + ... + bnz−n

and {e (t)} is a white noise sequence with mean zero and vari-
ance denoted by σ2. The polynomials A

(
z−1

)
and B

(
z−1

)
are assumed to be co-prime and have the same degree n. We
further assume that all zeros of A

(
z−1

)
lie strictly inside the

unit circle, so that {y (t)} is a stationary sequence. The lat-
ter assumption allows us to define the following quantities of
which we will make frequent use later on:
ARMA’s impulse response

H
(
z−1

)
=

∞∑
k=0

hkz−k =
B

(
z−1

)
A (z−1)

; h0 = 1 (2)

ARMA’s spectral density or spectrum

φ (z) = σ2H (z) H
(
z−1

)
(3)

ARMA’s covariance matrix of size n + 1

R = E

⎛
⎝

⎡
⎣ y (t)

.
y (t − n)

⎤
⎦ [

y (t) ... y (t − n)
]⎞⎠ (4)

ARMA’s covariance sequence

r (k) =
1
2π

∫ π

−π

φ
(
ejw

)
ejkwdw (5)

Under the additional assumption thatB
(
z−1

)
has no zeros on

the unit circle (so that φ
(
ejw

)
> 0 strictly for w ∈ [−π, π]
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we can also define the cepstral coefficients {ck}:
ARMA’s cepstral sequence

ck =
1
2π

∫ π

−π

Ln
[
φ

(
ejw

)]
ejkwdw (6)

see, e.g., [8, 10, 11, 12]. Note from (3) and (6) that

∞∑
k=−∞

ckz−k = Ln(σ2) + Ln(H(z)) + Ln(H(z−1)) (7)

which implies that

c0

2
+

∞∑
k=1

ckzk =
Ln(σ2)

2
+ Ln(H(z)) (8)

Formal differentiation of (8) with respect to z yields the equa-
tion:

∞∑
k=1

kckzk−1 =

∞∑
k=1

khkzk−1

∞∑
k=0

hkzk

(9)

or, equivalently (using hk = 0 for k < 0)

∞∑
k=1

khkzk−1 =
∞∑

k=1

(
∞∑

i=1

icihk−i)zk−1 (10)

From (10) we obtain the well-known equation that relates the
impulse response {hk} and the cepstral coefficients {ck} ([7,
8, 11])

hk =
1
k

k∑
i=1

icihk−i; k = 1, 2, ... (11)

Following the previous preparations, we can state the problem
of interest: given a sequence of observations {y (t)}N

t=1, esti-
mate the ARMA parameters σ2, {ak} and {bk}. We assume
that the ARMA order n is given[13, 14]. There are numerous
solutions to the ARMA parameter estimation problem, that
have been proposed in the last 60 years or so, see [1, 2, 3, 5]
for some examples. But probably the simplest method pro-
posed for ARMA parameter estimation is the DU [3, 5]. This
method consists of two main steps:

a. Fitting a long AR model to {y (t)}N
t=1, and computing

the residual sequence of this model, let us say {ê (t)}.
b. Estimating σ2 as the sample variance of {ê (t)}, and

ak,bk from (1) with {e (t)} replaced by {ê (t)}.
A problem of DU is that the estimation of the order of the long
ARmodel, let us saym, in step (a) is not a simple task. This is
specially true for ARMA sequences for which the polynomial

B(z−1) has zeros close to the unit circle, in which case a
rather large m might be needed for a reasonable fit in step
(a). A large m value will lead to a shorter estimated white
noise sequence {ê (t)} and therefore to a potentially worsened
accuracy of the estimates computed in step (b). Presumably
to avoid this type of problem, some implementations of DU
simply use a fixed value of m, such m equal to four times n
(see e.g. [6]).

3. LAST
In this section we will rely on ideas in [7, 8] to derive LAST,
an ARMA parameter estimation method that, while being as
simple conceptually and computationally as DU, does not suf-
fer from the above mentioned problem of the latter.
Let a =

[
1 a1 ... an

]T , b =
[

1 b1 ... bn

]T

and

H =

⎡
⎢⎢⎣

1 0 .. 0
h1 1 .. 0
.. .. .. ..
hn .. h1 1

⎤
⎥⎥⎦ (12)

A simple calculation shows that

E

⎛
⎝

⎡
⎣ e (t)

..
e (t − n)

⎤
⎦ [

y (t) .. y (t − n)
]⎞⎠ = σ2H

(13)
and that (using, once again, hk = 0 for k < 0)

B (z) = H (z) A (z) =
∞∑

i=0

n∑
p=0

(hi−pap) zi (14)

which implies that
b = Ha (15)

From (13) and (15) along with (1) we obtain:

0 = E
[
A

(
z−1

)
y (t) − B

(
z−1

)
e (t)

]2
=

[
aT −bT

] [
R σ2HT

σ2H σ2I

] [
a
−b

]

= aT
(
R − σ2HT H

)
a (16)

Because the matrix
[

R σ2HT

σ2H σ2I

]
is positive semi-definite,

we must have (belowR−1/2is a symmetric square root ofR−1):

R − σ2HT H ≥ 0 ⇔ I − σ2R−1/2HT HR−1/2 ≥ 0

⇔ σ2≤ 1
λmax(R−1/2HT HR−1/2)

=
1

λmax(HR−1HT )
(17)

where the symbol λmax stands for the maximum eigenvalue.
Furthermore, the matrix in (16),R−σ2HTH, must evidently
be singular. From this observation and from (17) we obtain
the following expression for σ2:

σ2 =
1

λmax(HR−1HT )
(18)
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Making use of (16), once more, it follows that:

a = the eigenvector of the matrix R − σ2HT H
associated with its minimum eigenvalue, with the
first element normalized to one.

(19)

The derived expressions for σ2, a and b (see (18),(19) and
(15)) as functions of R and H, can be used to estimate these
parameters as explained in the sequel.
First we estimateR by means of the forward-backward aver-
aging method (see, e.g. , [3][15]). Specifically, let

ψ =

⎡
⎣ 0 .. 1

.. .. ..
1 .. 0

⎤
⎦ (20)

denote the reversal matrix of appropriate dimensions, and let
∼
R be the following sample covariance matrix:

∼
R =

1
N − n

N∑
t=n+1

⎡
⎣ y (t)

..
y (t − n)

⎤
⎦ [

y (t) ... y (t − n)
]

(21)
Then we use

R̂ =
(∼
R + ψ

∼
Rψ

)
/2 (22)

as an estimate of R . Note that (22) is centro-symmetric but
not Toeplitz, unlikeR; yet there is empirical evidence that the
estimate ofR in (22) has better accuracy in small or medium
sized samples than Toeplitz estimates, [r̂ (k − p)]n+1

k,p=1, ofR.
Next, we estimate H by exploiting the relationship between
{hk} and the cepstral coefficients {ck}, see (11). To do so,
we need to estimate {ck} first in the following way (see the
definition of {ck} in (6) for motivation). Let φ̂(ejw) denote an
estimate of the ARMA spectrum, φ(ejw), and let IFFT denote
the inverse fast Fourier transform. Then:

{ĉk} = IFFT
{[

Ln
(
φ̂

(
ejwp

))]}
(23)

where wp = 2π
N for p = 1, N . Quite often, φ̂(ejw) in (23)

is obtained using the periodogram method (see, e.g., [1, 2, 3,
12]). However, we have observed empirically that the cep-
stral coefficient estimates obtained using (23) and the peri-
odogram method, and therefore the corresponding LAST es-
timates of the ARMA parameters, in general have satisfactory
accuracy only in relatively large samples. To obtain more
accurate estimates of these parameters for practical sample
lengths, we recommend the use of an estimate Ln

(
φ

(
ejw

))
suggested in [16], in lieu of Ln

(
φ̂

(
ejw

))
, namely:

Ln
[
φ̂

(
ejw

)]
=

1
M

[
1 .. ejMw

]
Ln

[
Γ̂
]
⎡
⎢⎢⎣

1
e−jw

..
e−jMw

⎤
⎥⎥⎦

(24)

where Γ̂ is a sample covariance matrix defined similarly to R̂

in (22), but of dimensions (M + 1,M + 1). In (24), Ln
[
Γ̂
]

denotes the matrix logarithm of Γ̂ , which is computed as:

Ln
[
Γ̂
]

= U

⎡
⎣ Ln (λ1) .. 0

.. .. ..
0 .. Ln (λM+1)

⎤
⎦UH (25)

where Udiag(λ1...λM+1)UH is the eigen-decomposition of
Γ̂. To guarantee that λk > 0 (for k = 1,M + 1), the value
of M in the definition of Γ̂ should not be chosen larger than
2N/3. Our experience suggests that, in general, M = N/2
is a good choice. The proposed ARMA parameter estimation
method is summarized next. Note that from now on this tech-
nique is called LAST and the previous one that uses eq.(23)
is refered to as old LAST.
LAST
Step 1. Compute cepstral coefficient estimates {ĉk} using
(23) and (24). Insert {ĉk} in (11) to obtain estimates

{
ĥk

}n

k=1

of {hk}n
k=1. Use

{
ĥk

}n

k=1
to build an estimate Ĥ ofH.

Step 2. Use Ĥ from Step 1 and R̂ from (22) in (18) to com-
pute an estimate σ̂2 of σ2. Obtain an estimate â of a as the
normalized minimum eigenvector of R̂− σ̂2ĤTĤ(see (19)).
Finally, estimate b as b̂ = Ĥâ

Observe that LAST does not require the solution of an
additional order estimation problem (besides the ARMA or-
der estimation one), and therefore that the proposed method
does not suffer from what appears to be an inherent drawback
of DU. In particular, unlike the DU estimates, the LAST esti-
mates of the ARMA parameters can be shown to be consistent
under weak conditions (recall that the consistency of the DU
estimate depends on the selection of the long ARmodel order;
on the other hand the consistency of the LAST estimates, for
instance the ones based on (23) and the periodogram method,
follows easily from the consistency of R̂ and of {ĉk} ).

4. NUMERICAL EXAMPLE AND CONCLUDING
REMARKS

The simulations that have been carried out showed that the
performance of LAST [17] can be much better than that of
the old version of LAST and of a version of the method of
[18]. For the sake of conciseness, in this paper we compare
LAST only with the Durbin’s method (DU), which is proba-
bly the most frequently used non-iterative method for ARMA
parameter estimation. Fig. 1 shows that the Durbin’s spec-
tral estimates have relatively poor performance when spectral
nulls have to be detected (the simulated ARMA is given by
a1 = 1.0, a2 = −1.5291, a3 = 1.4512, a4 = −0.7280, a5 =
0.2267, b1 = 1.0, b2 = 1.8794, b3 = 2.5321, b4 = 1.8794,
b5 = 1.0 ) this is due to the long predictor step which requires

3687



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
80

60

40

20

0

20

40

frequency

20 DU estimates

Actual spectral density

Fig. 1. Actual spectral density and 20 superimposed DU esti-
mates
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Fig. 2. Actual spectral density and 20 superimposed LAST
estimates

very large orders to cope with these low energy bands. In con-
trast, LAST shows better performance in this region due to
the sensitivity of the new cepstral estimate to low energy fre-
quency bands see in Fig. 2. In results not shown here, we have
observed that for close pole-zero pairs, LAST degrades more
gracefully than DU. In the extreme case of pure lines in white
noise LAST was much better than DU for any data record
length. In all cases, LAST exhibits lower bias than DU and
for large samples it has similar variance to DU. In summary,
LAST appears to be useful technique for ARMA spectral esti-
mation with similar performance to Durbin’s method in cases
with no spectral notches, but with hardly any competitor when
deep spectral nulls have to be detected and located.

5. REFERENCES

[1] P.J. Brockwell and R.A. Davis, “Time series: Theory
and methods,” Springer Series in Statistics, 1987.

[2] M.B. Priestley, “Spectral analysis and time series,” Aca-
demic Press, 1981.

[3] P. Stoica and R. Moses, “Spectral analysis of signals,”
Englewood Cliffs, NJ. Prentice Hall, 2005.

[4] C.I. Byrnes, P. Enqvist, and A. Lindquist, “Identifia-
bility and well-posedness of shaping-filter parameteri-
zations: A global analysis approach,” SIAM J. Control
and Optimization, vol. 41, pp. 23–59, Jan 2002.

[5] J. Durbin, “Efficient estimation of parameters in moving
average models,” Biometrika 46, 1959.

[6] Ljung, “System identification toolbox,” Mathworks.

[7] M.A. Lagunas et al., “Arma model maximum entropy
power spectral estimation,” IEEE Trans. On Acoustics
Speech and Signal Processing, vol. ASSP-32, No. 5, pp.
984–990, October 1984.

[8] B.R. Musicus and A.M. Kabel, “Maximum entropy
pole-zero estimation,” ICASSP-86,paper 27.12, Tokyo,
1986.

[9] C.I. Byrnes, P. Enqvist, and A. Lindquist, “Cepstral co-
efficients covariance lags and pole-zero models for finite
data strings,” IEEE Trans. Signal Processing SP-50, vol.
41, pp. 677–693, April 2001.

[10] B. Boguert, M.J. Healey, and J.W. Tukey, “The
frecuency analysis of time series for echoes: Cep-
strum, pseudo-autocovariance, cross-cepstrum and
shape cracking,” Ed. New York:Wiley, 1963.

[11] A. Oppenheim and R.W. Schafer, “Discrete-time signal
processing,” N.J. Prentice Hall, 1989.

[12] P. Stoica and N. Sandgren, “Smoothed nonparametric
spectral estimation via cepstrum thresholding,” IEEE
Signal Processing Magazine, pp. 34–45, November
2006.

[13] P. Stoica and Y. Selen, “Model-order selection: A
review of information criteria rules,” IEEE Signal
Processing Magazine, pp. 36–47, July 2004.

[14] J.J. Fuchs, “Arma order estimation via matrix perturba-
tion theory,” IEEE Trans. On Automatic Control, vol.
AC-32, pp. 358–361, April 1987.

[15] M. Jansson and P. Stoica, “Forward-only and forward-
backward sample covariance. a comparative study,” Sig-
nal Processing, vol. 77, pp. 235–245, 1999.

[16] V.F. Pisarenko, “On the estimation of spectra by means
of non-linear functions of the variance matrix,” Geo-
phys. J. Roy. Astronom. Soc, vol. 28, pp. 511–531, 1972.

[17] Miguel A. Lagunas and P. Stoica, “Matlab code for last,”
http://www.mathworks.com/matlabcentral/fileexchange/.

[18] A. Kizilkaya and A.H. Kayran, “Arma model parameter
estimation based on the equivalent ma approach,” Dig-
ital Signal Processing, Elseiver, vol. 16, pp. 679–681,
2006.

3688


