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ABSTRACT

We treat the linear regression problem of estimating θ from noisy
observations where the norm of θ is bounded. Instead of using the
constrained least-squares approach which minimizes the data error
over bounded norm vectors, we explore the use of the Chebyshev-
center estimate (CC), that is aimed at minimizing the worst-case
squared-error over all bounded-norm vectors θ and bounded noise.
We derive an explicit expression for the CC estimate and explore
some of its statistical properties. In particular, we show that it can be
viewed as a generalized Bayesian estimate where both the parameter
vector and the noise have hierarchial Gaussian priors.

Index Terms— Regression, minimax, constrained least-squares.

1. INTRODUCTION

Over the past 50 years, a multitude of estimators have been proposed
for the linear regression model y = Aθ+e, with the aim of improv-
ing the performance of the conventional least-squares (LS) method.
Stein [1] was the first to show that when A = I and the noise e is
Gaussian, the LS can be improved in terms of mean-squared error
(MSE) for all parameter vectors θ. Since then, a broad variety of
approaches have been developed for this problem.

Due to the fact that the LS estimate is minimax, no alternative
strategy can uniformly improve its MSE by a large amount, for all θ.
One way to significantly improve LS is to incorporate constraints on
θ. A popular restriction is that the norm of θ is bounded [3]. From
a Bayesian perspective, this can be interpreted as prior information
on the variance of θ. The typical estimation strategy in this context
is the constrained LS (CLS) technique in which the data error ‖y −
Aθ‖ is minimized subject to the prior constraints on θ. However,
this method does not deal directly with the estimation error ‖θ̂−θ‖.
Consequently, the resulting estimate θ̂ may be far from θ.

In some scenarios, the distribution of the noise e may not be
known, or the noise may not be random. A common estimation tech-
nique in these settings is the bounded error approach, also referred to
as set-membership estimation [4]. This strategy is designed to deal
with bounded noise, and prior information on θ.

In this paper, we adopt the bounded error methodology and as-
sume that the noise is norm-bounded ‖e‖2 ≤ ρ. The estimator we
develop can also be used when e is random, for example by choos-
ing ρ proportional to its variance. In Section 4 we explore several
choices of ρ for the case in which e is Gaussian. We further suppose
that ‖θ‖2 ≤ η. In recent work, we proposed a minimax estimation
strategy for this problem, which is aimed at designing an estimate θ̂
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that minimizes the worst-case estimation error ‖θ̂−θ‖2 over all fea-
sible θ [5,6]. As we show in Section 2, the proposed estimator has a
nice geometric interpretation in terms of the center of the minimum
radius ball enclosing the feasible set. Therefore, this methodology is
also referred to as the Chebyshev center (CC) approach.

Finding the CC of a set is typically an intractable problem. In
our previous work [5,6] we considered this approach for the general
linear model y = Aθ + e where θ lies in an intersection of ellip-
soids. To solve the problem we suggested an approximation based
on Lagrange duality and semidefinite relaxation. We then showed
through numerical simulations that this technique outperforms LS
and Tikhonov with respect to the estimation error.

In this paper we focus on the white-noise model y = θ + e
and consider some statistical aspects of the CC strategy. We begin,
in Section 2, by deriving an exact closed form solution for the CC
estimate under the constraints ‖θ‖2 ≤ η and ‖e‖2 ≤ ρ. As we show,
the CC shrinks the observations y towards the center of the prior
constrain set. This is in contrast with the CLS technique which is
either equal to LS, or lies on the boundary of the set. It is well known
that moving away from the boundary can improve the MSE [7].

In Section 3 we develop a Bayesian interpretation of the CC
method. Specifically we show that it can be viewed as a minimum
MSE (MMSE) estimate assuming that both θ and e are zero-mean
random vectors with hierarchial Gaussian priors, whose covariance
matrices are also random. In addition, we exploit the fact that the CC
estimate depends only on the difference in the norm bounds ρ−η and
not on the values themselves. We model this in a Bayesian setting
by presuming a strong prior only on the difference of the variances
of θ and e while a harmonic prior is assumed on the inverse sum
of the variances. This interpretation sheds further insight into the
properties of the CC strategy and further motivates its use.

2. THE CHEBYSHEV CENTER

2.1. Problem Formulation

We treat the problem of estimating a deterministic vector θ ∈ Rn

from observations y ∈ Rn which are related through

y = θ + e. (1)

Here e is a perturbation vector with bounded norm ‖e‖2 ≤ ρ, and
‖θ‖2 ≤ η. Combining the restrictions on θ and e, the feasible
parameter set, which is the set of all possible values of θ, is given by

Q = {θ : ‖y − θ‖2 ≤ ρ, ‖θ‖2 ≤ η}. (2)

Given that θ ∈ Q, a popular estimation strategy is the CLS
method in which the data error is minimized over Q:

min
‖θ‖2≤η

‖y − θ‖2. (3)
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The resulting estimate is given by

θ̂CLS =

{
y, ‖y‖2 ≤ η;√

η
yT y

y, ‖y‖2 ≥ η.
(4)

The fact that θ̂CLS minimizes the data error does not mean it leads
to a small estimation error ‖θ̂ − θ‖. In fact, when ‖y‖2 ≥ η, θ̂CLS

lies on the boundary of Q. It is well known that the MSE of such an
estimate can be improved by moving away from the boundary [7].
Consequently, we would like an estimate inside Q.

Since we are not assuming a prior distribution on θ, the MSE of
any estimate θ̂ of θ, defined by E{‖θ̂ − θ‖2}, will depend in gen-
eral on θ and therefore cannot be minimized. Furthermore, directly
computing the MSE of a nonlinear estimate θ̂ is typically difficult.
Thus, instead, we suggest seeking an estimate that minimizes the
worst-case squared error over all feasible vectors. This is equivalent
to finding the CC of Q:

min
ˆθ

max
θ∈Q

‖θ̂ − θ‖2. (5)

In developing the CC we explicitly assume that Q is non empty.
To develop a geometrical interpretation of θ̂, note that (5) can be

written equivalently as

min
ˆθ,r

{r : ‖θ̂ − θ‖2 ≤ r for all θ ∈ Q}. (6)

The set of all values of θ satisfying ‖θ̂ − θ‖2 ≤ r defines a ball
with radius

√
r and center θ̂. Thus, the constraint in (6) is equivalent

to the requirement that the ball defined by r and θ̂ encloses the set
Q. Since the minimization is over the squared-radius r, it follows
that the CC is the center of the minimum radius ball enclosing Q.
This is illustrated in Fig. 1, taken from [5], with the filled area being
the intersection of two ellipsoids. The dotted circle is the minimum
inscribing circle of the intersection. Evidently, in contrast with the

chebyshev
center

minimum enclosing
circle

Fig. 1. The CC of the intersection of two ellipsoids.

CLS method, the CC will lie in the center of the set.

2.2. Derivation of the CC Estimate

When n = 1 the setQ defined by (2) is just an interval inR. Clearly
the CC of the interval is its mid point. Thus, in the remainder of the

paper we assume that n ≥ 2. In this case, [8, Thm. 5.2] implies that
the CC estimate for our model is the solution of

maxθ,t,λi
t + ‖θ‖2

s.t.
(

(λ1 + λ2 − 1)I θ − λ1y
θT − λ1y

T t − λ1(ρ − yT y) − λ2η

)
� 0,

λ1 ≥ 0, λ2 ≥ 0,
(7)

where the notation A � 0 means that A is nonnegative definite.
Using convex analysis tools, it can be shown that the dual to (7) is

maxθ,t
t

s.t. ‖y − θ‖2 + t ≤ ρ
‖θ‖2 + t ≤ η.

(8)

Therefore, the CC tries to move the solution towards the center of
the constraints: each constraint is satisfied with a margin of t and
the aim is to maximize this gap. Clearly, this will move the solution
away from the boundary of the set (unless the optimal t is t = 0).

Interestingly, the CLS can be written in a similar form to (8).
Namely, it can be determined as the solution of

maxθ,t
t

s.t. ‖y − θ‖2 + t ≤ ρ
‖θ‖2 ≤ η.

(9)

Comparing (8) and (9) highlights the fundamental difference be-
tween the two strategies: In the CLS the margin is only on the data
error constraint while in the CC formulation both restrictions are sat-
isfied with a gap.

An important observation from (10), which will be instrumental
in developing the Bayesian interpretation of the CC approach, is that
the estimate depends only on the difference ρ − η and not on ρ and
η separately. This can be seen by substituting t′ = t − ρ into (8).

Problem (8) is a simple convex optimization problem and there-
fore can be solved using duality theory which leads to the solution

θ̂CC =
1

2

(
1 − γ

yT y

)
[0,2]

y. (10)

Here γ = ρ − η, and we used the notation

x[a,b] =

⎧⎨
⎩

x, a ≤ x ≤ b
a, x ≤ a
b, x ≥ b.

(11)

It is interesting to note that θ̂CC has a similar form to the James-
Stein (JS) estimate [2]. An important difference is the factor of 1/2

that appears in (10). A Bayesian interpretation of θ̂CC, which will
also explain this scaling factor, is developed in the next section.

3. BAYESIAN INTERPRETATION

Throughout this section we consider the unrestricted CC estimate

θ̂UCC =
1

2

(
1 − ρ − η

yT y

)
y. (12)

3.1. Empirical Bayes Interpretation

We first show that θ̂UCC of (12) can be viewed as an empirical Bayes
estimate, in the limit of large n [9].

Suppose that θ is a Gaussian vector consisting of independent
identically distributed (iid) elements with variance τ , and that e is
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comprised of iid Gaussian variables with variance σ. If τ and σ are
known, then the MMSE estimate of θ from y is

θ̂ =
τ

σ + τ
y. (13)

Empirical Bayes methods are based on using (13) in conjunction
with estimates for τ and σ.

There are two key properties of the CC approach which are in-
strumental in developing a Bayesian interpretation. The first, is that
in deriving the CC estimate, both constraints ‖y − θ‖2 ≤ ρ and
‖θ‖2 ≤ η are treated equally. This is in contrast with the CLS
approach in which the first constraint is minimized subject to the
second. In a Bayesian context, this implies that the covariance of θ
and e should be treated equally, namely both should be considered
unknown, and not only that of θ which is the typical approach in
empirical Bayes methods. The second important feature is that only
the difference ρ − η plays a role. To incorporate this we express the
estimate of (13) in a way that explicitly depends on the difference.
Finally, in the CC context, we have prior knowledge on the norms
of θ and e. Since the CC estimate depends only on the difference
ρ − η, we assume that σ − τ is given. Using the fact that for large
n, ‖θ‖2 → nσ and ‖e‖2 → nτ , we choose

σ − τ =
ρ − η

n
. (14)

We can express the MMSE estimate of (13) as:

θ̂ =
τ

σ + τ
y =

1

2

(
1 − σ − τ

σ + τ

)
y. (15)

Substituting (14), and using the fact that in the limit of large n,

yT y → n(σ + τ), (16)

results in the unrestricted CC estimate θ̂UCC of (12).

3.2. Generalized Bayesian Interpretation

We now show that the CC can be viewed as an exact MMSE estimate
for a certain choice of priors on θ and e. Specifically we assume that
θ and e are zero-mean Gaussian vectors with covariance matrices
τI and σI respectively, where τ and σ are themselves random vari-
ables. This is in contrast to several generalized Bayesian estimates
proposed in the literature in which the covariance of e is fixed, and
a hierarchial prior is assumed only on θ [10–12]. To build a prior on
τ and σ we consider the norm constraints as well as the fact that the
CC depends only on the difference ρ − η. Defining

r = σ − τ, s =
1

σ + τ
, (17)

we want to choose r as a function of ρ − η. On the other hand, the
prior on s should not be too informative, as the sum ρ + η plays no
role in the Chebyshev estimate.

To incorporate the constraints ‖θ‖2 ≤ η and ‖e‖2 ≤ ρ we
assume that E{τ} = η/n, and E{σ} = ρ/n. It then follows that
E {r} = (ρ − η)/n. We do not make any further restrictions on
the probability density function (pdf) of r. To ensure that s does not
grow to fast we assume that s has the generalized pdf ps(s) = 1/s.
We further assume that r and s are independent. We now show that
under this model the MMSE estimate of θ from y is θ̂UCC of (12).

Given τ and σ, the MMSE estimate of θ follows from (15) as
θ̂ = (1/2)(1 − rs)y. Taking the expectation over τ and σ we have

θ̂ =
1

2
(1 − E {rs|y})y. (18)

Now,

E {rs|y} =

∫ ∫
rsp(y|r, s)pr(r)ps(s)drds∫ ∫
p(y|r, s)pr(r)ps(s)drds

(19)

where pr(r) is the pdf of r. Given r, s, the vector y is Gaussian with
zero mean and covariance (1/s)I. Therefore,

p(y|r, s) ∝ exp(−‖y‖2s/2)sn/2. (20)

Substituting (20) into (19) we have

E {rs|y} =

∫
exp(−‖y‖2s/2)sn/2+1ps(s)ds

∫
rpr(r)dr∫

exp(−‖y‖2s/2)sn/2ps(s)ds
, (21)

where we used the fact that
∫

pr(r)dr = 1. Since E {r} = (ρ −
η)/n and ps(s) = 1/s, (21) becomes

E {rs|y} =
(ρ − η)

∫
exp(−‖y‖2s/2)sn/2ds

n
∫

exp(−‖y‖2s/2)sn/2−1ds
. (22)

Applying integration by parts,∫
exp(−‖y‖2s/2)sn/2ds =

n

‖y‖2

∫
exp(−‖y‖2s/2)sn/2−1ds,

(23)
so that (22) becomes

E {rs|y} =
ρ − η

‖y‖2
. (24)

Plugging (24) into (18) results in the estimate θ̂UCC.

4. CHOOSING THE NOISE BOUND ρ

We now discuss two methods for choosing ρ assuming that e is a
Gaussian random vector with iid random variables of variance σ2.

In our first approach we use the fact that the random variable
z = ‖y − θ‖2/σ2 has a chi-squared distribution with n degrees of
freedom, denoted χn

2 . Therefore, pt = P (z ≤ t) = χ2
n(t). We

suggest choosing t such that pt is close to 1. Denoting α = 1 − pt,
our strategy is to select ρ = σ2t with t = (χ2

n)1−α, where (χ2
n)1−α

is the 1 − α percentile of the chi-squared distribution.
The second technique we suggest is based on minimizing the

SURE estimate of the MSE subject to the constraint that Q is non
empty. Let θ̂ = y + h(y) be an arbitrary estimate of θ that is
weakly differentiable in y and such that E {|hi(y)|} is bounded
where hi(y) is the ith component of h(y). Then an unbiased es-
timate of the MSE of θ̂ is given from the SURE principle as [12]

S(θ̂) = nσ2 + ‖h(y)‖2 + 2σ2
n∑

i=1

dh(y)

dyi
. (25)

The CC estimate (10) depends on a single parameter γ. Our ap-
proach is to choose the γ that minimizes the SURE estimate.

Theorem 4.1. Let θ̂ be the CC estimate that minimizes the SURE
criterion and let a = yT y. Then, for η < 2σ2,

θ̂ =

{
0, 0 ≤ a < a2

0;√
η
a
y, a ≥ a2

0.
(26)

For η ≥ 2σ2:

θ̂ =

⎧⎪⎨
⎪⎩

0, 0 ≤ a < a1;(
1 − σ2(n−2)

yT y

)
y, a1 ≤ a ≤ a2;√

η
a
y, a ≥ a2,

(27)
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where a0, a1, a2 are defined by

a0 =
1

4
√

η

(
η + 2σ2 +

√
(η + 2σ2)2 + 16ησ2(n − 2)

)
a1 = σ2(n − 1 +

√
2n − 3)

a2 =
1

2
(η + 2σ2(n − 2) +

√
η2 + 4ησ2(n − 2)).

For small values of η, the resulting CC estimate can be viewed
as a pre-test CLS method. Indeed, for values of a above a given
threshold, the estimate coincides with the CLS solution of (3). For
small values the estimate is 0. When η is increased, for a certain
range of a values the estimate coincides with the JS technique.

5. SIMULATIONS RESULTS

We now demonstrate the behavior of our methods via several simu-
lations. In the examples, we compare our estimators with the CLS
estimate (3) and a projected JS approach which is a positive-part JS
estimator truncated if its norm is too large:

θ̂PJS =

⎧⎨
⎩

[
1 − σ2(n−2)

yT y

]
+

y, a ≤ aTH;√
η

yT y
y, a ≥ aTH.

(28)

Here [x]+ = x if x ≥ 0 and 0 otherwise, and aTH is the unique
value of a for which the norm of θ̂PJS as defined by the first row of
(28) is equal to η. For each value of η we generate 5, 000 observa-
tion vectors y, where the elements of θ are chosen as iid Gaussian
random variables. The entire vector is then scaled to norm 1 and
multiplied by a uniform random variable on [0,

√
η].

In Fig. 2 we plot the MSE for σ2 = 3, n = 7, and α = 0.05
in the chi-squared estimate. In this regime, the chi-squared Cheby-
shev approach seem to offer substantial MSE improvements over
the other methods. Similar behavior was exhibited for α = 0.1 and
other choices of n. If the true norm of θ is larger than η, then the per-
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Fig. 2. MSE as a function of η for n = 7, σ = 3 and α = 0.05.

formance of the chi-squared estimate deteriorates considerably. This
can be seen in Fig. 3 where we repeat the simulations with n = 3
and the squared-norm of θ distributed uniformly on [0, 2η].
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Fig. 3. MSE as a function of η for n = 3, σ = 3 and α = 0.05
where the true value of η can be twice as large as the assumed value.
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