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ABSTRACT
We describe a method to analyze materials on a conveyor belt

using natural gamma spectra collected with a BGO (Bismuth

Germanate) gamma ray detector, which collects emissions

from Potassium (K), Uranium (U), and Thorium (Th) in the

materials. A statistical model is proposed based on a Pois-

son process and an approximate maximum likelihood (ML)

technique via the expectation-maximization (EM) algorithm

is then used to estimate the amount of each of the three ele-

ments in the material. A refinement of the statistical model is

used to estimate linear drift in the detector.

Index Terms— Gamma-ray detectors, Poisson processes,

Maximum likelihood estimation, Expectation-maximization,

Calibration.

1. INTRODUCTION

We describe, and compare with more conventional techniques,

a method for analysis of minerals on conveyor belts using nat-

urally occurring gamma ray emissions. The natural gamma

analyzer is essentially a BGO detector housed in a tempera-

ture controlled lead box beneath a conveyor belt, with a lead

shield above the conveyor belt. The lead serves to shield the

detector from terrestrial and cosmic gamma radiation which

would otherwise add noise to the spectrum. The detector is

connected to a digital multi-channel analyzer, which sorts the

measured gamma rays into a 1024 channel spectrum by en-

ergy. For a coal application, the analyzer provides ash (non-

combustible mineral matter) content typically every 2 to 15

minutes without contacting the coal or requiring the addition

of sealed radioactive sources. This technique relies on strong

linear correlations between concentrations of K, U and Th and

ash in coal, and leads to a calibration equation for predicting

ash content of coal.

Gamma ray spectra are collected every 900 seconds from

a BGO detector with 1024 channels linearly spaced across en-

ergies up to 3 MeV. To maintain spectrum stability, the volt-

∗A provisional patent (Australian Application Number 2007905412) for

the algorithm was filed in October 2007.

age applied to the detector is adjusted at the start of each sam-

ple collection. Analysis is based on the prior collection of

elemental spectra for K (from potassium chloride), U (from

torbenite rock) and Th (from a gas mantle), which we refer

to as library spectra. These 3 chemical elements are the only

ones to emit gamma radiation. Figure 1 shows the library

spectra of these 3 elements.
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Fig. 1. Library spectra for K, U, and Th. Each spectrum has a

very distinctive signature: Spectrum K has a prominent peak

in the channel interval [420,520] where spectra U and K are

flat; spectra U and Th have unique peaks in the [530,630] and

[750,950] intervals.

Our goal is to analyze the amounts of K, U and Th present

in the material, and as part of this process, we estimate the

detector drift. Conventional calibration methods simply sum

the counts in wide windows around each major peak in the

spectrum. Slight detector drifts will cause the peaks to move

within these windows and so have only a small impact on

the analyzer accuracy. Of course, large detector drifts which

cause these peaks to move partly or wholly outside the win-

dows cause inaccurate analysis. Because there is no ubiqui-

tous reference peak in the spectrum, automatic adjustment of

detector voltage to compensate for detector drift is not nor-
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mally implemented. Over time, the gain of the detector’s

photo-multiplier tube changes. This is minimized by con-

trolling the detector temperature, but electronics drift is in-

evitable. The main deficiency of the window approach is that

only parts of the spectrum are employed, which increases er-

rors compared with a method which involves consideration

of the entire spectrum. A calibration method using the entire

spectrum permits the use of a smaller, less expensive detector

to achieve the same accuracy.

Here we describe our alternative ML approach using a

Poisson model for channel counts. This gives equations which

seem to be difficult to solve directly, so we resort to an EM

approximation technique. The inclusion of a linear model

for drift further complicates the calculations even within the

EM approach, and we employ a simpler method for drift es-

timation using a search for the drift parameters based on the

Levenberg-Marquardt variant [1, 4] of gradient descent.

2. PROBLEM FORMULATION

Our initial derivation ignores drift of the spectral peaks over

time. The three spectra for K, Th, and U, the only primary ele-

ments naturally emitting gamma radiation, as functions of the

channels, are denoted by SK,SU,STh or more conveniently

for writing formulae as Si(c), i = 1, · · · , 3, c = 1, · · · , nc,

where nc denotes the number of channels, b(c) the datum;

that is, a spectrum from a mineral sample, and αK, αU, αTh

the amounts of potassium, uranium and thorium present in

the sample. We also use α = (α1, α2, α3)� to represent these

three amounts when convenient.

A simple (and currently used) approach to the estimation

of αK, αU, αTh involves a linear regression:

3∑
i=1

αiSi = b. (1)

This is, of course, an over-determined system and typically a

least-squares approach is taken to solving it. Our approach

more closely models the physical processes generating the

data. We assume that the number of counts in the cth chan-

nel is a Poisson random variable Xc, and that these random

variables are independent both between channels and between

elements. Let bc be the number of counts occurring in the cth

channel. We calculate the likelihood in a form that will facil-

itate, at least approximately, ML estimation (see, e.g., [2]) of

the parameters.

The likelihood of a given datum x is then

ΛX(α) = P (Xc = bc counts in the cthchannel,∀c)

= e−
P

c(
P3

i=1)α
iSi(c)

nc∏
c=1

1
bc!

(
3∑

i=1

αiSi(c)

)bc

,

which is a product of Poisson distributions with mean αKSK
c +

αUSU
c + αThSTh

c . Our justification for independence is as fol-

lows: each separate atom gives rise to its own independent

decay chain and it is unlikely in the context of large numbers

of atoms of these materials being present in the sample that

the analyzers will receive gamma rays from different parts of

the same decay chain.

Here, bK
c , bU

c , bTh
c , for c = 1, · · · , nc, are variables in the

sum of bc. The direct approach to ML estimation involves

differentiation of the log-likelihood with respect to the un-

knowns and setting to zero. This gives the following equa-

tions:
nc∑

c=1

Si(c) =
nc∑

c=1

bcS
i(c)∑3

j=1 αjSj(c)
. (2)

We need to solve these equations for the unknowns αK, αU,

αTh. We use an EM approach.

3. EXPECTATION-MAXIMIZATION APPROACH

The EM method approximates the ML solution to an estima-

tion problem. We refer to [3] for a discussion of the EM tech-

nique. It works by assuming that there are measurements for

certain “hidden variables”. The likelihood is computed on

the basis of these hidden data and the ML solution obtained.

Usually this is more tractable than the original ML problem.

In our case the hidden data are the unknown counts bK
c ,

bU
c , bTh

c . The distribution of these hidden data is:

ΛY(α) = P (Yc = (bK
c , bU

c , bTh
c ) counts in cthchannel,∀c)

=
nc∏

c=1

(
e−

P3
i=1 αiSi(c)

∏3
i=1(α

iSi(c))bi(c)∏3
i=1 bi(c)!

)
, (3)

so the log-likelihood is

log ΛY(α) =
nc∑

c=1

3∑
i=1

(
−(αiSi(c))− log(bi(c)!) + bi(c) log(αiSi(c))

)
.

The EM method consists of two steps:

• The Expectation step (or the E-step). The conditional

expectation of the log-likelihood with respect to the ac-

tual data X is computed.

• The Maximization step (or the M-step). Based on the

imputed data obtained from the E-step, the unknown

parameters, αK, αU, and αTh are estimated to maximize

the log-likelihood.

The result of one EM step will give an estimate whose likeli-

hood is at least as large as its predecessor [3]. Typically the

EM process is iterated several times.

We refrain from giving the details of the calculations in-

volved in this case. They result in an updated value of the αi

of the form:

αi =
nc∑

c=1

(
αi

0S
i(c)∑3

i=1 αi
0Si(c)

bc

)/
nc∑

c=1

SK
c . (4)
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We can merge the E-step and M-step, yielding the following

iterative scheme for estimation of αK, αU, αTh:

EM-1) Take the counts (bc)nc
c=1;

EM-2) Guess a value for αK
0 , αU

0 , αTh
0 — this might be based

on a simple use of estimates of the mean for the Pois-

son distributions;

EM-3) Use the formulae (4) to iteratively find αK
n, αU

n, αTh
n by

replacing αK
0 , αU

0 , αTh
0 by αK

n−1, α
U
n−1, α

Th
n−1;

According to the EM theory this iteration never decreases the

likelihood, and typically converges to the ML solution.

4. INCORPORATING DRIFT

At this point we incorporate drift of the detectors into the

model. Empirical evidence suggests that, to a reasonable ap-

proximation, drift is linear in the channels. That is, the data

originally going into channel c now enters channel βc + γ,

where β and γ are two new unknown parameters. Occur-

rences of bi(c) are now substituted by bi(βc + γ). Let α0 =
(α1

0, α
2
0, α

3
0)
� be the initial estimates of the amounts, and let

β0 and γ0 be the initial estimates of drift. The log-likelihood

function becomes:

log ΛY(α, β, γ) =
3∑

i=1

nc∑
c=1

(
−αiSi(c)

− (log(bi(βc + γ))!) + bi(βc + γ) log(αiSi(c))
)
. (5)

EM calculations for the estimation of α yield

αi =
∑nc

c=1 E[bi(βc + γ) |X, α0, β0, γ0]∑nc

c=1 Si(c)
, (6)

where

E[bi(βc + γ) |X, α0, β0, γ0] =
αi

0S
i(τ(c))∑3

j=1 αj
0S

j(τ(c))
b(τ(c)),

and τ(c) =
(

βc+γ−γ0
β0

)
. Calculation of drift parameters via

the EM algorithm is difficult, and we adopt a simplified ap-

proach. With the detectors regularly calibrated, the drift in-

volved is quite small, but not insignificant enough to be ne-

glected. We propose a standard optimization approach, the

Levenberg-Marquardt (LM) method [1, 4], to iteratively re-

fine the drift parameters β and γ, using the initial estimates

β = 1 and γ = 0.

Let d = (β, γ)� and let

f(c;d) = bi(βc + γ)−
∑3

i=1
αiSi(c) (7)

f(d) = (f(1;d), · · · , f(nc;d))�. (8)

We design the following objective function to be minimized

by LM:

min
β,γ

F (β, γ) = f�(β, γ)f(β, γ). (9)

The LM optimization process is carried out in an alternating

fashion with the EM approach for the estimation of α. The

entire procedure of our algorithm is thus:

1. Set d = (1, 0)�.

2. Use the current estimate d for the drift parameters, ap-

ply the EM algorithm to estimate α, i.e., the amounts

for K, U, and Th.

3. By using the current estimate of α, apply the LM steps

above to refine d.

4. Go back to step 2.

We have found that the above procedure need only be iterated

4 times to obtain good alignments of the peaks of the spectra.

We call this algorithm of estimating α and d in an alternate

fashion the EM-LM algorithm.

5. RESULTS

An independent analysis is not readily available to produce

“true” values for the α parameters or for the drift parameters

for our real data. As a result, we have tested the algorithm in

the following two ways:

1. Application to synthetically generated data based on

the library spectra and prescribed values for the α, β,

and γ parameters.

2. Application to collections of real data, where perfor-

mance is measured by fidelity of the reconstructed spec-

tra using the estimated parameters.

For each test on synthetic data, a random α vector was first

generated with values of αi around the range expected in the

minerals; the three hidden variables bK
c , bU

c , and bTh
c , for each

channel c, were then synthesized as a Poisson Process with

mean equal to SK
c , SU

c , and STh
c . The total values of these

three hidden variables were then summed to give the count

b(c), giving a test spectrum that is free of drift. The drift pa-

rameters β and γ were finally synthesized randomly and the

drift affected spectrum was generated via spline interpolation.

For the testing on real data, the channel counts of the spectra

vary greatly depending on the duration the materials were un-

der the BGO detectors and the composition of the materials.

We compared the accuracy of the EM approach for esti-

mating α, with the technique which involves replacement of

the EM step (i.e., step 2) of the EM-LM algorithm by the lin-

ear least squares solution given by (1). We term this algorithm

the LLS-LM algorithm.

We present results from 3 sets of 100 tests with synthetic

data, simulating the cases of high, medium and low channel

counts. In each test, the spectrum was passed to the EM-LM

and LLS-LM algorithms. To compare the performances of

the two algorithms, the following error measures were com-

puted: the mean percentage errors of α and d from the known

ground truth values in the simulation.
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εα εd

Set LLS-LM (0.79%,1.33%,1.64%) (0.03%,2.06%)

1 EM-LM (0.40%,0.40%,0.42%) (0.01%,1.20%)

Set LLS-LM (0.90%,1.44%,1.65%) (0.04%,2.56%)

2 EM-LM (0.45%,0.46%,0.42%) (0.02%,1.51%)

Set LLS-LM (1.26%,1.52%,1.76%) (0.04%,2.59%)

3 EM-LM (0.97%,0.69%,0.73%) (0.03%,2.65%)

Table 1. Comparison of the LLS-LM and EM-LM algo-

rithms. εα and εd denote the percentage errors of the α and

drift values for K, U, and Th.

Table 1 shows the mean percentage errors of α and d from

the two algorithms. It is evident from Table 1 that EM-LM

outperforms the LLS-LM algorithm for all cases. In addition,

use of LLS to estimate the amounts α when these entities are

small often leads to negative mounts, which is non-physical.

The EM-LM algorithm was applied to many real spec-

tra varying from coal to iron ore. Only one of the results

is presented here; in this case the input spectrum is from

an iron ore dataset. In Figure 2(a), the blue curve shows

the input spectrum from this dataset and the red curve shows

the reconstructed spectrum using the library spectra {Si | i =
1, · · · , 3} and the amounts α estimated from EM without tak-

ing drift into account. The two curves are clearly misaligned.

Figure 2(b) shows a much better reconstructed spectrum after

drift of the detector is corrected using EM-LM. Figure 2(c)

and (d) show the input and drift corrected spectra and their

differences over the channels.

As mentioned before, it is impossible to obtain the ground

truth of α. Neither is it possible to obtain the ground truth of

the drift parameters, d. However, our experiments confirm

that the reconstructed spectra coincide much better with the

library spectra when drift correction is incorporated into the

algorithm. From our tests on synthetic data, the EM-LM out-

performs the linear least squares method.

6. CONCLUSION

We have described an estimation method for on-belt analy-

sis of materials using their natural gamma spectra. The tech-

nique involves the use of a Poisson model for the generation

of the spectra, based on the experimentally determined library

spectra for each of these elements. We have incorporated pa-

rameters in the model to describe the drift of the detector per-

formance over time. We have described the ML Estimation

problem for all of the parameters, its approximation using an

EM approach, and finally a technique in which EM is used

to estimate the amount of each element present, but employs

a more direct approach to the estimation of the detector drift

parameters.

The last approach has been implemented on both synthet-

ically generated and real data and been shown, insofar as tests
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Fig. 2. Output of the EM-LM algorithm on the EM020911

spectrum from an iron ore dataset. (a) Input and reconstructed

spectra, b and b̃, without drift correction (using EM only);

(b) Input and reconstructed spectra, b and b̂, with drift cor-

rection (using EM-LM).

available to us will permit, to be significantly superior to the

more conventional approach using a linear regression to esti-

mate the amount of each material present.

While we believe that the results obtained here represent a

significant advance on previous techniques used in this form

of analysis, this paper is a report on ongoing work. We are

continuing to investigate alternative and better methods for

the overall estimation process associated with on-belt gamma

ray spectrometric methods of elemental analysis and this work

will be reported elsewhere.
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