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ABSTRACT

The CLEAN algorithm is one of the best known signal pro-
cessing algorithms in (radio-)astronomy. It is essentially a
deconvolution procedure and is used e.g. to reconstruct a
sparse (star) brightness distribution from noisy (’dirty’ - hence
’cleaning’) observed data. In this paper we make a connection
for the first time between CLEAN and l1-denoising. We show
CLEAN does a crude version of l1-denoising and develop a
modified algorithm with much improved behaviour.

Index Terms— l1 denoising, sparse, CLEAN, estimation.

1. INTRODUCTION

The CLEAN algorithm is widely used in Astronomy as a
means of reconstructing sparse spatial point sources from
noisy data. The algorithm was developed by [1] but later [2]
traced it back to [3],[4],[5].
While CLEAN is usually presented in an Astronomical

applications contex, as [2] made clear it is just an (unusual)
iterative algorithm for solving a linear regression problem.
In practice the algorithm is not run to convergence but

stopped with an ad-hoc criterion. And it is the analysis of
the iteration together with especially its stopping criterion that
forms the point of departure for our work.

l1-denoising has gained a lot of interest as a signal esti-
mation procedure in recent years. Particularly because of its
ability to produce sparse solutions. l1 penalised optimization
approaches to signal estimation seem to have a number of ori-
gins. They were developed in image processing ; see[6] for
references, a summary and important convergence analysis,
and independently [7]. But in these image processing appli-
cations it is an image gradient that is penalised. When the
penalty is used on signal amplitude rather than signal gradi-
ent the origins are different. Important earlier work is [8].
The l1 penalised least squares regression problem of interest
here was apparently first formulated in [9] and later indepen-
dently by [10] where it was given the name LASSO. To rec-
ognize the priority of [9] we henceforth refer to it as LART.
Although the l1 penalized least squares regression problem

can be solved by linear programming, iterative procedures re-
main of interest and [11] developed an important algorithm
building on work of [12]. For inverse problems work see [13]
and its references.
In section 2 we set up the least squares regression prob-

lem. In section 3 we recap the CLEAN algorithm and its con-
vergence analysis. In section 4 we develop the connexion to
l1-denoising. This leads us to modify the CLEAN algorithm
to obtain an iterative l1-denoiser.. An example is given in sec-
tion 5 and conclusions in section 6.

2. REGRESSION

As indicated in the introduction we will view CLEAN sim-
ply as an unusual iteration for solving a least squares regres-
sion problem . Given measurements yi, xi, i = 1, · · · , n on
a dependent variable y and predictors or regressors xT

i =
(x1,i, · · · , xp,i), the problem is to fit a linear regression re-
lation by least squares , ĉ, β̂ = arg.min

c,β Σn
1 (yi − c − xT

i β)2

where c is an intercept. In matrix form this is

ĉ, β̂ = arg
min

c,β
‖ y − c1n − Xβ ‖2

and y = (y1, · · · , yn)T ; 1n = (1, · · · , 1)T is an n-vector;
XT = (x1, · · · , xn). The columns ofX which contain all the
observations on each variable will be denoted as x(u), u =
1, · · · , n so X = (x(1), · · · , x(p)).
It is important for the subsequent development that we

first centre the variables about their means. This removes c

from the problem. We continue to denote the centred columns
by x(u) and the data by y. The problem is now

β̂ = arg.min
β E(β) : E(β) = 1

2 ‖ y − Xβ ‖2

The mean vector μ = Xβ, can be written μ = Σp
1x(u)βu.

We now require the columns be scaled to unit length. So with
bu =‖ x(u) ‖ βu, u = 1, · · · , p,

μ = Σp
1x(u)βu = Σp

1

x(u)

‖ x(u) ‖
bu

The utility of column scaling in improving the numerical con-
ditioning of X has long been understood in numerical analy-
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sis [14] and statistics [15]. For simplicity we will now denote
the scaled columns as x(u) so μ = Σp

1x(u)bu.

If XT X has full rank, the least squares problem has so-
lution bols = (XT X)−1XT Y . However if either this is not
the case or X is poorly conditioned as in ill-conditioned in-
verse problems, this solution is not available. Also in large
dimensional problems the computation may be prohibitive.
For these reasons and others to be clear, iterative solutions
continue to be of interest. In the sequel if XT X is not of full
rank we take bOLS to denote a solution of the least squares
equationsXT (y − XbOLS) = 0.
There are many iterative procedures for solving the least

squares regression problem such as Gauss-Seidel, Landweber
etc [16]. But CLEAN is very different from all these.

3. CLEAN & RELATED ALGORITHMS

We now proceed to describe and review the CLEAN algo-
rithm. The algorithm is initiated at b(0) = 0.. Given the iter-
ate b(k) we proceed as follows. We first calculate the current
residual or error vector, e(k) = y − Xb(k). We also introduce
the negative of the E-gradient

γ(k) = XT e(k) ,≡ γ(k)
u = xT

(u)e
(k), 1 ≤ u ≤ p

Since the x(u) are centred and scaled, γ
(k)
u is the covariance

between the uth variable and the current residual.
The idea is to update the regression vector by changing

just one component. So we look for an update

b(k+1) = b(k) + αρδu (3.1)

where δu is a vector of 0s but with a 1 in position u. And the
step ρ and the index u are to be chosen. Also α is a gain factor
which we take to be 1 for the moment.

3.1. CLEAN

We aim to choose ρ, u to maximize the reduction in error sum
of squares . The residual after the update is

e(k+1) = y − Xb(k+1)

= y − X(b(k) + ρδu) = e(k) − ρx(u)

And the error sum of squares after the update is

‖ e(k+1) ‖2=‖ e(k) ‖2 −2ρxT
(u)e

(k) + ρ2 (3.2)

since ‖ x(u) ‖
2= 1. We now choose ρ, u as,

û, ρ̂ = arg
min

u

min

ρ
‖ e(k+1) ‖2

For given u, ‖ e(k+1) ‖2 is clearly minimized at ρ̂u =

xT
(u)e

(k) = γ
(k)
u giving a minimized error sum of squares of

‖ e(k+1)
u ‖2=‖ e(k) ‖2 −(γ(k)

u )2

We now choose u to minimize this leading to

ûk = û = arg
max

u
|γ(k)

u | = arg
max

u
|xT

(u)e
(k)| (3.3)

So û is the index corresponding to the variable whose gradient
or covariance is largest. This then yields a step

ρ̂ = xT
û e(k) = γ

(k)
û (3.4)

and an error sum of squares

‖ e(k+1) ‖2=‖ e(k) ‖2 −(γ
(k)
û )2 (3.5)

Note that if we now allow α �= 1 in the update (3.1) but still
use (3.4) then the error sum of squares update (3.5) becomes

‖ e(k+1) ‖2=‖ e(k) ‖2 −α(2 − α)(γ
(k)
û )2 (3.6)

This now yields the convergence result of [4], [5],[2].
Theorem 1. For the algorithm (3.1,3.3,3.4) with 0 < α < 2
then b(k) → bOLS as k → ∞.
Proof. From 3.6, so long as 0 < α < 2, the error sum of
squares continues to reduce until γ(k)

û = 0 whereupon by def-
inition of û all gradients vanish. Thus the converged value
obeysXT (y − Xb∞) = 0 ⇒ b∞ = bOLS .
Below we use α = 1 since it gives the fastest convergence.

3.2. RELATED ALGORITHMS

Although no awareness of CLEAN is shown in [11] an algo-
rithm is introduced, called forward stagewise regression, in
which γ

(k)
û is replaced by its sign. We call it sign-CLEAN

(sCLEAN). Next is forward selection regression, well known
in variable selection in regression. At each iteration one adds
the variable showing a maximum correlation; but it is a dif-
ferent (though related) correlation to that used by CLEAN.
Also the regression vector update is totally different. When
a new variable is added, the whole regression is redone and
the new regression vector is the least squares estimator. Other
important algorithms that differ from CLEAN are the LARS
algorithm [11] and the Landweber algorithm [17] (who calls
it the shooting algorithm) which was rediscovered by [18].

4. L1-DENOISING

Consider the following penalized least squares problem ,
min

b J(b) : J(b) = 1
2 ‖ y − Xb ‖2 +hΣp

1|bu|
The criterion is easily seen to be convex in b, so that there is
a unique minimum, denoted b∗. The derivative of the penalty
(the J-gradient) is

∂J

∂bu

= −xT
(u)(y − Xb) + hsgn(bu) = −γu + hsgn(bu)

is discontinuous at 0 for each bu. This means the solution in-
volves exact zeroing of some components of b,[9],[10]. Thus
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sparse solutions can be obtained. The amount of sparseness is
controlled by the penalty weight h. The empirical choice of
h is an important issue that will be discussed elsewhere. One
approach is given in [11].
The first order optimality conditions are given as follows

[9]. Let Z = {u : bu = 0}, Zc = {u : bu �= 0}. Then

γu − hsgn(bu) = 0, u ∈ Zc (4.7)
|γu| ≤ h, u ∈ Z (4.8)

Note that it follows that, for all u, |γu| ≤ h.
[9] develop an iterative procedure for minimizing J(b) but

it requires a messy monitoring procedure and is quite different
from CLEAN.

4.1. CLEAN Revisited

In practice CLEAN is not iterated to convergence. Rather the
E-gradient is monitored and the iteration is terminated when
|γ

(k)
û | ≤ λ where λ > 0 is a user chosen threshold. The sim-

ilarity of this stopping condition to the first order optimality
conditions for LART is quite striking and it is this that first
caught the author’s attention. We now have.
Theorem 2. CLEAN with the rule: stop the iteration at

the first k for which |γ(k)
û | ≤ 2h, iteratively reduces J(b).

J(b(k+1)) < J((k)), while |γ(k)
û | > 2h

. Proof. We have from (3.5,3.4)

J(b(k+1)) =
1

2
‖ e(k) ‖2 −

1

2
(γ

(k)
û )2 + hΣp

1|b
(k+1)
u |

But from (3.1,3.4), b(k+1)
u = b

(k)
u , u �= û while

|b
(k+1)
û | = |b

(k)
û + γ

(k)
û | ≤ |b

(k)
û | + |γ

(k)
û |

⇒ J(b(k+1)) ≤ J(b(k)) −
1

2
(γ

(k)
û )2 + h|γ

(k)
û |

< J(b(k)), if |γ(k)
û | > 2h.

This is a most remarkable and encouraging result and
establishes the formal connexion between CLEAN and l1-
denoising. But CLEAN falls short of minimizing J(b) be-
cause it requires we stop when |γ(k)

û | ≤ 2h whereas we need
to continue reducing J(b) until |γ(k)

û | ≤ h.
A similar result holds for sign-CLEAN with α = 2h.

This choice of α however means very slow convergence. And
again we have the problem of stopping early.

4.2. STM-CLEAN

Fortunately a judicious combination of CLEAN and sCLEAN
overcomes this. The regression vector update uses the neg-
ative E-gradient. A natural idea is to use the negative J-
gradient instead. From the condition (4.7) we note sgn(γu) =

sgn(bu), bu �= 0. So we modify the negative J-gradient from
γu − hsgn(bu) to γu − hsgn(γu) = sgn(γu)(|γu| − h).
This leads to a new algorithm:

STM-CLEAN = CLEAN with a soft thresholding modifica-
tion. The update is b(k+1) = b(k) + ρ̂δû where,

ρ̂ = sgn(γ
(k)
û )R̂k, R̂k = |γ

(k)
û | − h

Note then that, ‖ b(k+1) − b(k) ‖∞= |R̂k|. We now introduce
the limit set L = {b : max

u |γu(b)| = h}. Note that the optimal
value b∗ ∈ L. And any limit point of STM-CLEAN must lie
in L. Continuing, we can take R̂o > 0 since otherwise the
start value is already in L.
We now have:

Theorem 3. STM-CLEAN has the following properties:
(i) After each iteration there is at least one index, namely,
û = ûk for which |γ

(k+1)
u | = h.

(ii) R̂k ≥ 0, k ≥ 0
(iii) R̂k → 0 as k → ∞.
(iv) b(k) converges to a compact connected subset of L.
Remark. We are not able to show b(k) → b∗ but simulations
below suggest it does.
Proof. The E-gradient update for index û = ûk is γ

(k+1)
û =

γ
(k)
û − (γ

(k)
û − hsgn(γ

(k)
û )) = hsgn(γ

(k)
û ). Which yields

|γ
(k+1)
û | = h and (i) is established. Now due to (i) at iteration

k + 2 we will have R̂k+1 ≥ 0 and this holds for k ≥ 1 and
hence for k ≥ −1 so (ii) holds. Proceeding much as before,
(3.2) gives,

‖ e(k+1) ‖2 = ‖ e(k) ‖2 −2ρ̂γ
(k)
û + ρ̂2

= ‖ e(k) ‖2 −2R̂k|γ
(k)
û | + R̂2

k

Repeating the argument in Theorem 2 we find, since R̂k ≥ 0,

J(b(k+1)) − J(b(k)) ≤ −|γ
(k)
û |R̂k +

R̂2
k

2
+ h|R̂k|

≤ −(R̂k + h)R̂k +
R̂2

k

2
+ hR̂k ≤ −

1

2
R̂2

k

Now J(b) is lower bounded by J(b∗) > 0 and so J(b(k)) is
a lower bounded non-increasing sequence and so must have a
finite limit say J∞. Now summing up the inequality we find
1
2Σ∞

0 R̂2
k + J∞ ≤ J(b(0)) < ∞. Thus R̂k → 0 as k → ∞.

Thus ‖ b(k+1) − b(k)||∞ → 0. Then by Ostrowski’s theorem
[19],b(k) converges to a compact connected set which must be
a subset of L.

5. SIMULATIONS

We simulated data from a regression model y = Xb + ε

where the entries of X, ε are independent identically dis-
tributed Gaussians with zero mean and unit variance. X was
generated only once and then column scaled; ε changed with
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Fig. 1. STM-CLEAN Simulation Histograms

each simulation. The regession vector was also generated as
a Gaussian random vector and then thresholded and rounded
leaving 4 non-zero coefficients. We used n=200,p=10,h=2
and B=100 simulations.
Fig.1. shows for STM-CLEAN histograms of # of itera-

tions, final J-values, # non-zero coefficients, # wrong signs
(i.e. when signγu �= sign(bu)) -there are none - at conver-
gence. A similar set of histograms (done on the same data) for
CLEAN shows not surprisingly, mostly wrong signs, much
higher final J values and many fewer iterations. Plots not
shown indicate that after an initial rapid reduction most of the
iterations appear to be used for making small adjustments.

6. CONCLUSIONS

In this paper we have exhibited for the first time a relation be-
tween the celebrated CLEAN algorithm of astronomy and l1-
denoising. This has led us to a new algorithm STM-CLEAN
which comes closer to solving the l1-denoising problem.
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