
DETECTION AND PERFORMANCE ANALYSIS FOR A MOVING POINT SOURCE IN
SPECKLE NOISE, APPLICATION TO EXOPLANET DETECTION BY DIRECT IMAGING.

I. Smith, A. Ferrari and M. Carbillet
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ABSTRACT

With the current development of astronomical instruments able to
detect the direct light of exoplanets, such as the Very Large Tele-
scope instrument SPHERE, statistical tools need to be developed in
order to make precise detection and estimation assessments. We pro-
pose a detection algorithm that delivers an estimation of the position
and the intensity of the potentially detected exoplanet. Because of
the numerical constraints on the signal processing task, the detector-
estimator is based on a simplified Gaussian model where we use a
field-rotation effect as the main discriminating criterium between the
planet and the speckles. However, for a given threshold on the statis-
tics test, the Probability of False Alarm (PFA) and the Probability
of Detection (PD) need to be accurate. For that purpose we use a
more realistic model and the saddlepoint approximation to compute
the PFA and PD. The performance of the approximation is evaluated
on a 1D data model.

Index Terms— Signal detection, Object detection, Speckle, Es-
timation, Astronomy

1. INTRODUCTION AND SUMMARY

The Very Large Telescope Planet Finder SPHERE (Spectro-Polarimetric
High Contrast Exoplanet REsearch), that will include extreme adap-
tative optics (AO) and high-contrast coronagraphy, is under devel-
opment [1]. To detect exoplanets from a set of images, the main
difficulty comes from the combination of residual speckles uncor-
rected by the adaptive optics and static aberrations of the optical
system. The diffraction pattern of the static aberration of the in-
strument being similar to the unresolved exoplanet profile, detection
algorithm proposed in the literature tries to discriminate the planet
from the background by the detection of its motion. Previous work
tries to suppress and stabilize the background using differential
processing of successive images [2, 3].

The present paper adopts a statistical modeling approach and
proposes to estimate the intensity and position of the unknown
source. The true data model distribution being intractable, this is
achieved using a simple test based on a Gaussian data model which
leads to a practical detector for the large amount of astrophysi-
cal data (typically 1200 images of 150 × 150 pixels for a 3 hour
run). Then a crucial point for the exoplanet detection problem is
to precisely relate the detection threshold to the probability of false
alarm (PFA) and the probability of detection (PD). This requires
evaluating the detection performances of the test using the true data
model. The marginal distribution of each pixel intensity has been
shown to be Rician, except for pixels located at the center of the
image [4]. Therefore the true data model cannot be reduced to a
Gaussian distribution. It is also important to note that the simulation
of realistic data sets using for example the software package CAOS

[5] or the software package SPHERE [6] is extremely time demand-
ing and does not allow to obtain PD and PFA using Monte Carlo
simulations. Unlike the direct distribution, the moment generating
function (MGF) of the speckle model is reachable. Consequently
we propose to use the saddlepoint approximation in order to derive
the PFA-threshold relation and evaluate the quality of the estimator
through the Receiver Operating Characteristic (ROC) curve.

This paper is organized as follows. Section 2 presents the sta-
tistical properties of the observed data. Section 3 is devoted to the
detection algorithm using the simplified model. Section 4 evaluates
the performance of the test using the exact data model. Conclusions
are reported in section 5.

2. DATA MODEL

2.1. Distribution of the intensities

The dataset consists inN successive images. The intensity on image
k is represented by a M × 1 vector ik which results from the contri-
bution of the star lightuk and the planet light. The vectoruk is asso-
ciated to aM×1 vector containing the intensities uk(�) = |ψk(�)|2
in the focal plane of the telescope which arise from the propagation
of the star light wavefront through the atmosphere, the adaptive op-
tic and the coronagraph which will reduce the diffraction of the star
light. A straightforward extension of the high flux model derived in
[7] to the multivariate case leads to a decomposition of the complex
amplitude ψk in two terms ψk = μ + φk

• The first, μ ∈ C
M , models the static impulse response of

the coronagraph and the static aberrations (e.g. lens defaults)
of the optical system. This deterministic term plays a central
role in the planet detection problem [4].

• The second term models the residuals of atmospheric turbu-
lence that are not corrected by the adaptive optics system
and that propagate through the coronagraph. This term is as-
sumed to be a complex zero-mean circular Gaussian vector,
i.e. E[φkφ

H
k ] = Σ and E[φkφ

t
k] = 0, see [8].

The presence of a planet at the unknown position r results in
a similar model for the complex amplitude where the determinis-
tic part is the response of the system to a point source located in r
(note that due to the coronagraph this response is not shift invariant).
However, for an extreme adaptive optics, the atmospheric turbulence
residuals can be neglected with respect to the central part of this re-
sponse. Consequently the presence of a planet on the first image at
the unknown position r results in the deterministic response αpk(r)
where α is the unknown intensity of a possible planet, and pk(r) is
the known instrumental response of the source at time k. Note that
this model assumes that not only the instantaneous profile is known
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but also the trajectory of the source, which is the case for a telescope
with an alt-azimuthal mount.

Consequently we will consider that:

ik = uk + αpk(r), with uk(�) = |ψk(�)|2 (1)

where ψk ∼ Nc(μ,Σ). Moreover the successive vectors ψk, k =
1 . . . N are assumed to be independent.

Gaussian circularity for a 1-dimensional random variable im-
plies that its real and imaginary part are independent with identical
variance. Consequently Eq. (1) shows that uk(�) is proportional to
a random variable distributed according to a noncentral χ2 distribu-
tion with 2 degrees of freedom [9]. The multivariate distribution of
uk is much more complicated to derive. It can be obtained by noting
that uk is the diagonal of the M ×M matrix ψkψ

H
k which has a

noncentral complex Wishart distribution [10]. Consequently, the dis-
tribution of uk is the ad-hoc marginal of this distribution. Unfortu-
nately analytical computation of its probability distribution function
is intractable in the general case.

The expression of the moment generating function of a noncen-
tral complex Wishart distribution gives immediately the following
closed form expression for the uk MGF:

huk (s) = E[e−ut
ks] =

e−μHDs(I+ΣDs)−1μ

|I + ΣDs| (2)

where Ds is the diagonal matrix Ds = Diag(s). According to (1)
the MGF of ik is:

hik (s) = e−αpk(r)tshuk (s) (3)

2.2. Distribution of the photocounted data

The vector of intensities ik described above corresponds to the case
where the images have been recorded under a high flux assumption.
However, for low-flux objects or short exposure time, the photo-
counting effect has to be considered. Denote as xk the vector of
photocounts associated to the intensity ik. Conditioned upon the
vector of intensities, the random variables xk(�), � = 1, . . . ,M are
independent and distributed according to Poisson distributions with
means ik(�), � = 1, . . . ,M . Tractable expressions of Pr(xk = q)
are obviously difficult to obtain. However, many interesting proper-
ties regarding the distribution of xk can be derived in the multivari-
ate case [11]. We will focus hereafter on the MGF of xk which is
related to the MGF of ik by:

hxk (z) = E[

MY

�=1

z(�)xk(�)] = hik (1 − z) (4)

Figure 1 illustrates a typical simulation of the IRDIS (Infra-
Red Dual-beam Imaging and Spectroscopy) facility of SPHERE,
obtained using the software package SPHERE v2.1[6] developed
within the CAOS problem-solving environment [12] and assuming
the standard simulation parameters.

3. DETECTION ALGORITHM

According to the model developed in the previous section, the planet
detection problem consists in the composite hypothesis test:

H0 : α = 0, H1 : α > 0 (5)

Fig. 1. The left image represents in a log-scale the time integra-
tion of 8 sources:

PN
k=1 pk(r), for 8 different initial positions r.

The right image is the time integration of N = 450 simulated im-
ages:

PN
k=1 xk, represented at the power of 0.2 again.

The distribution of xk being intractable the derivation of a test statis-
tics will rely on the simplified data model:

xk = d + αpk(r) + εk (6)

where εk ∼ N (0, σ2I) and d denotes the stationary determinis-
tic unknown instrumental response (in our case: coronagraph, static
speckles, ...), and r is still the unknown initial position of the ex-
oplanet. This model can be justified under high flux assumptions.
In fact it has been proved in [13] that under unrestrictive assump-
tions, when ∀�, E[uk(�)] → +∞, a properly standardized xk sat-
isfying (4) will converge in distribution to a Gaussian independent
distributed vector.

Maximizing the likelihood function L(α, r,d, σ2) under the
simplified model with respect to the unknown parameters (α,d, σ2)
for a given r leads to:

α̂(r) =
X

k

wk(r)txk, wk(r) =
Npk(r) − P

k pk(r)

cN (r)
(7)

cN (r) = N
X

k

‖pk(r)‖2 − ‖
X

k

pk(r)‖2
(8)

It is worthy to note that the identifiability condition for the parame-
ters is cN (r) �= 0 which is the case as soon as at least two sources
are disjointed.

The MLE estimation of r is then achieved by maximizing the

compressed likelihood r → L(α̂(r), r, d̂(r), .):

r̂ML = arg max
r=1,...,M

˘
cN (r)α̂(r)2

¯
(9)

and from it we get α̂ML = α̂(r̂ML). Note that if we can neglect
the variation of the term cN (r) with respect to r, as this term is also
positive, and if α̂ML > 0, we can approximate

r̂ML ≈ arg max
r

(α̂(r)) (10)

If r was known, the model (6) being Gaussian and linear with
respect to (d, α) the MLE would be an unbiased and efficient es-
timator with: var(α̂ML) = Nσ2cN (r)−1 But actually, since r is
unknown, the model is not linear in the parameters. Furthermore,
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Fig. 2. Thresholded map (2 levels) of α̂(r) obtained from the data
of figure 1 and superimposed on

P
xk. The 4 simulated exoplanets

located at 0.′′2, 0.′′5, 1′′ and 2′′ and 1.6 10−6 times less bright than
the central star are correctly detected with the first threshold.

due to the motion of the source pk, the model xk = sk(θ) + εk,
εk ∼ N (0, σ2I) does not correspond to a standard one where the
xk would be i.i.d. However, generalizing the proof of the proposi-
tion IV.E.1 from [14] to the case of a non-scalar parameter θ, it can

be can proved that θ̂ML is asymptotically consistent anyway.

According to these results we propose the test:

H0 rejected if α̂ML > ζ (11)

where the threshold ζ depends on the required probability of false
alarm (PFA). Note that since the data do not actually satisfy the
model used in the MLE, we do not use the Generalize Likelihood
Ratio Test and keep α̂ as the simple test statistics used. Figure 2
shows a thresholded map of α̂(r).

4. DETECTION LEVEL

4.1. Saddlepoint approximation

The purpose of this section is the evaluation of the performances of
the detection scheme (11) when applied to the data distributed ac-
cording to the model described in section 2. This is achieved assum-
ing that r is known. In order to simplify the notation, the dependence
on r will be dropped in the sequel.

Taking benefit of the existence of an analytic expression of the
MGF and from our interest in the tails of the distribution for the
computation of PFA and PD, we use the standard saddlepoint ap-
proximation [15]. Assuming that we are concerned by cases where
E[α̂] < ζ under H0 and E[α̂] > ζ under H1, we use the following
expressions of the saddlepoint approximation: if hi(z) denotes the

MGF of the test statistic under Hi,

PFA(ζ) ≈ −(2πφ′′0 (z0))
−1/2eφ0(z0)

(12)

PD(ζ) ≈ 1 − (2πφ′′1 (z1))
−1/2eφ1(z1)

(13)

φi(z) =
hi(z)e

ζz

n(i)z
, n(0) = −1, n(1) = 1 (14)

where the saddlepoints z0 < 0 and z1 > 0 satisfy

φ′i(zi) = 0, z0 < 0, z1 > 0. (15)

However, although for continuous and integers random variables
these saddlepoint approximations are well known, in our case α̂ is a
linear combination of integers (see Eq. (7)) so α̂ ranges in a discrete
but not integer set. This raises a difficulty for the definition of the
MGF. A similar problem occurs in [16] where the authors approxi-
mate the discrete random variables by continuous random variables.
Approximating α̂ by a continuous random variable is justified in [17]
by showing that the relative error of the approximation decreases as
rapidly as N increases. Then we use the expressions above and

h1(z) = E[e−zα̂] =
NY

k=1

E[e−zwt
kxk ] =

NY

k=1

hxk (e−zwk ) (16)

where eu �
= (eu(1), . . . , eu(M))t. Substituting Eqs. (4,3,2) in (16)

gives:

ln(h1(z)) = −α
X

k

(1 − e−zwk )tpk + ln(h0(z)) (17)

with:

ln(h0(z)) = −
X

k

ln |I + Σ(I −De−zwk )|

− μH
X

k

(I −De−zwk )(I + Σ(I −De−zwk ))−1μ (18)

Computation of the first and second order derivatives of φ0(z) is
obtained from (18) using (ln |A(z)|)′ = −Tr(A(z)−1A(z)′) and
(A(z)−1)′ = −A(z)−1A(z)′A(z)−1.

Note that the computation of the saddlepoint approximation does
not necessarily involve the resolution of the equation φ′0(z0) = 0,
especially if we want to describe a large set of thresholds. In prac-
tice we let z0 vary on the negative real axis and z1 on the positive
real axis, and compute simply the corresponding threshold from a
reexpression of (14,15):

ζ =
1

zi
− d ln(hi(z))

dz
|z=zi (19)

4.2. Simulation results

The saddlepoint approximation used to derive the PFA and PD for
(17) and (18) has been validated using a simple 1D model where
M = 30 and N = 10; the ψk are generated according to a first
order circular Gaussian autoregressive process with covariance ma-
trix Σi,j = c0ρ

|i−j|ejϕ(j−i) and with parameters μ = 0.08 × 1,
φ = π/4, ρ = 0.85 and c0 = 1; the source is uniformly accelerated
and its profile is chosen static with a characteristic size similar to the
correlation pattern induced by Σ; the datasets are simulated under
H0 (α = 0) and H1 with α = 0.5; 106 independent datasets are
simulated and tested for H0 and H1.
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Fig. 3. Left: Source profiles αpk for k = 1...10 (note p1 = p2).
Right: realization of x1 under H0 (top) and H1 (bottom).
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Fig. 4. Left: Histograms of α̂ under H0 (top) and H1 (bottom).
Right: ROC curve where ln(1 − PD) is a function of ln(PFA) (see
text for the legend).

Figure 3 shows some resulting simulation plots. Figure 4 shows
on the left the histograms of α̂ obtained under H0 and H1, and on
the right it shows the ROC curve in a log view, computed in three
different ways: first the PFA and PD are computed according to the
saddlepoint approximation (13,14), then empirically, using respec-
tively the H0 and the H1 histograms of α̂, and finally assuming that
α̂ is normally distributed, with moments estimated from the same
empirical distributions as in the previous ROC curve. Figure 5 shows
these same probabilities but now as functions of the threshold ζ and
stressing the transition domain between high PFA and low PD. It is
interesting to note that the probability density function of α̂ under
H0 is slightly skewed, so that the saddlepoint approximation bet-
ter approximates the empirical distribution than the Gaussian one.
And on Fig. 5, we remark that this effect is less visible for PD

than PFA, which can be interpreted within the frame of the approxi-
mation made to justify the simplified model (6): the presence of the
source increases the mean flux so that the data is better approximated
by a normal distribution.

5. CONCLUSION AND OUTLOOK

Thanks to the test statistics derived and the accurate model used to
evaluate these statistics, we saw that the saddlepoint approximation
gives good and better estimates of PFA and PD than a Gaussian one.
But taking a simulation case with a lower signal leads to a less ac-
curate approximation: a threshold corresponding to PFA ∼ 10−3

0.1 0.15 0.2 0.25 0.3 0.35 0.4
10

9

8

7

6

5

4

3

2

1

0

1

ln
 p

ro
ba

bi
lit

y

 

 
PFA: saddlepoint
PFA: empirical
PFA: erf function
1 PD: saddlepoint
1 PD: empirical
1 PD: erf function

Fig. 5. Logarithms of PFA and 1−PD as function of the threshold,
computed from the saddlepoint approximation.

would not correspond anymore to a low PD. Then, we should proba-
bly prefer a development in Edgeworth series for PD[15]. Moreover,
we still need to find estimators of μ and Σ and check that we finally
did have found a practical approximation to estimate PFA and PD
testing it on large astronomical datasets.
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