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ABSTRACT

In this paper, a radio frequency interference (RFI) excision

algorithm using variance-based analysis on power spectral

statistics is proposed and tested on the solar data collected

from our frequency agile solar radio-telescope (FASR) sub-

system test-bed (FST). A threshold approach working on a

proposed test statistic T (x; f), shown to be F-distributed, is

developed to effectively identify the presence of non-Gaussian

RFI in the Gaussian solar flare background. Detailed discus-

sions on signal duty cycle and threshold setting are provided.

Real-data experimental results are presented to demonstrate

the robustness and effectiveness of the proposed algorithm.

Index Terms— radio frequency interference (RFI), power

spectral estimation, statistical analysis.

1. INTRODUCTION

In radio astronomy, radio-telescopes are used to passively sense

the radio spectrum to detect weak emissions from celestial

sources. The high sensitivity requirement of radio telescopes

makes them vulnerable to various radio frequency interfer-

ence (RFI). Quite often the RFI is caused by comparatively

strong terrestrial and/or satellite communication signals. There

has been increasing research interest and needs in RFI ex-

cision algorithms based on a stochastic analysis of the dy-

namic power spectrum of the collected signal [1]. Using a

stochastic framework, we can approximate the time-domain

or frequency-domain data as a random sequence of certain

distributions, whose statistical characteristics can be derived

hence utilized for RFI identification.

Following such a framework, the spectral kurtosis (SK)

estimator, based on spectral-domain statistics, was proposed

in previous work [2], with some restrictions, for non-Gaussian

RFI identification. The SK estimate was defined as the ratio of

the second-order moment over the squared first-order moment

of the instantaneous power of data on a given frequency bin.

The SK estimate should be centered at unity with a specifiable
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variance in the absence of RFI, and deviates from the unity in

the presence of RFI.

Continued from the work in [2], we present in this pa-

per the statistical relationship of the dynamic spectrum of so-

lar data on adjacent frequency bins. Our study on solar data

spectrum reveals that with high probability the power level

change of the solar flare for adjacent and sufficiently nar-

row frequency bins is gradual, while that for the RFI is typ-

ically considerable. Based on this observation, we carry out

a variance-based spectral statistical analysis, and propose a

test statistic T (x; f) for RFI identification. This statistic, de-

fined as a ratio of the averaged power located at adjacent fre-

quency bins within the data processing window, is later shown

to be F-distributed with certain parameters. Using statistics

of T (x; f), we can determine whether the RFI is present at a

given frequency bin. The proposed identifier turns out to be

reliable, efficient, and suitable for real-time implementation.

It is well known that there is no universal method for RFI

mitigation in radio astronomy analysis. The applicability and

success of a mitigation procedure depends on a number of

factors such as the type of radio telescope, the type of obser-

vation, and the type of RFI [1]. The analysis in this paper is

based on our FST system operating at the Owens Valley So-

lar Array (OVSA), which was newly developed to provide a

test-bed for studying RFI excision algorithms [3].

2. DATA MODEL

We first introduce in this section the data model of the so-

lar dynamic power spectrum, where only the RFI-free solar

emission is considered. Referring to papers [1, 2, 4], we list

some of the main characteristics of the solar data as follows:

• The time-domain real-valued solar emission data sam-

ples, {xn}, can be modeled as zero mean Gaussian ran-

dom variables, xn ∼ N(0, σ2
xn

), with a globally vary-

ing while locally flat underlying power spectral density

(PSD) Px(f).

• The complex-valued discrete Fourier transform (DFT)

coefficients of a given length-N solar data segment x
are given as (for k = 0, . . . , N − 1):
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X(fk) =
1√
N

N−1∑
n=0

xne−j2πfkn � A(fk) + jB(fk),

where fk = k/N is the k-th frequency bin. A(fk)
and B(fk), as linear combinations of Gaussian random

variables, are themselves Gaussian distributed with zero-

mean and variances σ2
A(fk) and σ2

B(fk) respectively.

• If no special time-domain windowing function is ap-

plied, it can be shown that for k = 1, . . . , N/2 − 1
(excluding the DC and Nyquist frequency bins), the

real and imaginary parts A(fk) and B(fk) are indepen-

dent and identically distributed (i.i.d.) Gaussian vari-

ables with σ2
A(fk) = σ2

B(fk). Hence the estimated PSD,

P (x; fk) � A2(fk) + B2(fk), with E{P (x; fk)} =
Px(fk) = 2σ2

A(fk) = σ2
xn

, follows a scaled chi-square

distribution with two degrees of freedom, χ2
2.

3. VARIANCE BASED TEST STATISTIC

In our previous work [2], the SK estimator was found to be

insensitive to intermittent RFI with an on-off duty-cycle near

50%. Now we describe an alternative estimator that avoids

this limitation. We use a variance-based analysis, which is a

traditional approach in statistical analysis. A representative

example is the Fisher’s analysis of variance, i.e., Fisher’s F-

distribution (Fisher-Snedecor distribution) for statistical sig-

nificance test.

Based on our extensive study of the dynamic power spec-

trum provided by the FST system at OVSA, we find that typi-

cally RFI is caused by various communication signals located

at nearly constant frequency bins, occupied continuously or

discontinuously in time, with a distinguished instantaneous

power level compared with the background solar emission

located at adjacent frequency bins. For cases of continuum

radio emission, a gradual power change along adjacent fre-

quency bins can be expected even for strong solar flares.

In our study it is assumed that there are available for anal-

ysis M adjacent data blocks, x(1), . . . ,x(M), each contain-

ing N time-domain samples. The data block x(m) (m =
1, . . . , M ) is first transformed into N frequency-domain DFT

coefficients, X(m)(fk), and then N corresponding PSD sam-

ples, P (x(m); fk). Due to the real-valued realization, only

half of the PSD samples contain useful information and are

thus used. To facilitate the statistical analysis, we propose to

use a test statistic T (x; fk), defined as the ratio of the aver-

aged power (across all M data blocks) on two adjacent fre-

quency bins fk and fk−1:

T (x; fk) � Pave(x; fk)
Pave(x; fk−1)

, (1)

where Pave(x; fk) = 1
M

∑M
m=1 P (x(m); fk) is χ2

2M dis-

tributed (scaled) due to the non-overlapping data segmenta-

tion in use. For RFI-free solar emission data, we assume that

Px(fk) ≈ Px(fk−1) for adjacent and sufficiently narrow fre-

quency bins due to the gradual change of its PSD. Accord-

ingly, we have Pave(x; fk) and Pave(x; fk−1) i.i.d. χ2
2M dis-

tributed. Consequently, for k = 2, . . . , N/2 − 1, T (x; fk)
follows a F-distribution [5],

fT (x;fk)(y) =
Γ(2M)

Γ(M)Γ(M)
yM−1

(y + 1)2M
, (2)

where Γ(M) = (M − 1)! denotes the Gamma function. For

M > 2, the mean and variance of T (x; fk) can be found as,

E{T (x; fk)} =
M

M − 1
≈ 1( for large M) (3)

V ar{T (x; fk)} =
M(2M − 1)

(M − 1)2(M − 2)
≈ 2

M
( for large M).

(4)

These statistical characteristics will be later shown as crucial

parameters for RFI identification.

4. DETECTION OF DETERMINISTIC SIGNALS

In this section, we model the RFI as a deterministic sinusoidal

signal of modulated amplitude α. Moreover, we consider that

the frequency of the deterministic signal exactly matches to

one of the non-DC nor Nyquist discrete frequency bin fk.

The power spectrum sample P (m)(x; fk) then follows a

scaled noncentral chi-square distribution, χ2
2(λ

(m)
k ) [2]. Hence,

the averaged power spectrum Pave(x; fk) follows a scaled

noncentral χ2
2M (λk) distribution. Therefore, T (x; fk) is non-

central F-distributed. The non-centrality parameter λk can be

given as λk = Mα2/2Px(fk) = Mηk, with ηk � α2/2Px(fk)
denoting the signal-to-noise ratio (SNR) at the frequency bin

fk (viewing RFI as signal). The mean and variance of T (x; fk)
can then be given as,

E{T (x; fk)} =
2M + λk

2M − 2

≈ 1 +
ηk

2
(for large M), (5)

V ar{T (x; fk)} =
(2M + λk)2 + 4(M + λk)(M − 1)

4(M − 1)2(M − 2)

≈ 1
M

[
2 + 2ηk +

1
4
η2

k

]
(for large M).(6)

In many applications, the interfering signal may not be

continuous (or always ON) within our data processing win-

dow. In order to model such a situation, we further introduce

the concept of signal duty cycle. Particularly, we assume that

the randomly occurring transition exactly coinciding with R
of the M data blocks results in a duty cycle β � R/M . For

this given duty cycle, the revised mean and variance of the

test statistic T (x; fk) can be represented as (for large M ):

E{T (x; fk)} ≈ 1 +
1
2
βηk, (7)
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V ar{T (x; fk)} ≈ 2
M

+
β

M

[
2ηk +

1
4
η2

k

]
. (8)

In general, a non-Gaussian RFI located at frequency bin

fk should cause T (x; fk) to deviate statistically from its ex-

pected value given in eq.(3). Thus the testing of T (x; fk)
provides a feasible way to discriminate RFI from background

signal. From analytical results given in eqs.(3) and (7), we can

identify the presence of RFI by testing the value of T (x; fk)
against thresholds derived from eqs.(3-4). Fig.1 below shows

the simulated performance of the proposed testing of T (x; fk)
when we have deterministic sinusoidal RFI present at fk. The

parameter M is chosen as 1000. We allow SNR ηk varying

from 1dB to 10dB to cover the worst case of the theoretical

expectation, and duty cycle β varying from 0 to 1. Notice that

when M is reasonably large, we can further approximate this

F-distributed test statistic T (x; fk) for RFI identification to a

simple Gaussian distribution N(1, 2/M). Therefore, a 99.7%
of confidence interval (CI) for identifying RFI can be set as

three times of the standard deviation from the nominal mean,

i.e.,1 ± 3σT = 1 ± 3
√

2/M . As seen from the figure, the

algorithm works well for this simplified simulation involving

both duty cycle and SNR.
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Fig. 1. Testing of T (x; fk) vs. duty cycle of the RFI

5. IMPLEMENTATION AND EXPERIMENT
RESULTS

As mentioned before, the experiments are carried out using

data from our FST system, which was developed recently to

provide a test-bed for studying RFI excision algorithms for

solar data. The proposed method is tested on selected pre-

viously recorded data files, where each includes data of 4 s

elapsed time over an instantaneous 500 MHz bandwidth that

can be tuned anywhere in the frequency range of 1 to 9 GHz.

Our instrument is able to record time-domain data at a

sampling rate of 1 sample/ns, while due to the limitation of

the on-board memory of the digitizing system, no more than

about 2 ms of contiguous time-domain data segment can be

recorded at a time. The data we used were taken in mode

3, as defined in the reference paper [3], where every 0.1 ms

of data samples are separated by a 20 ms gap. For the solar

spectrum displayed (tested) here, a quadratic time-frequency

representation is used. The number of frequency bins N is

8192, and the number of time blocks M is 2400. These pa-

rameters provide a frequency resolution of around 0.122 MHz

and a time resolution of 1.6 to 1.7 ms. Following our previous

analysis, the thresholds are defined as 1 ± 3
√

2/M .

As shown in figures 2−3 next page, we have tested typical

scenarios where solar flares are contaminated with RFI. It can

be easily seen that when we have RFI present at certain fre-

quency bins, which can be seen as continuous or intermittent

horizontal lines across the spectrum (shown in (a) for both

figures), sharp spikes can be inspected in the averaged power

(shown in (b)). And at these same frequency bins, T (x; fk)
deviates (exceeds the threshold) from the expected value 1
(shown in (c)). By simply eliminating those frequency bins,

we get the cleaned spectrum presented in (e), where RFI is

almost eliminated and data of interest is comparatively en-

hanced. The corresponding averaged power after cleaning is

also shown in (d) for reference.

6. CONCLUSIONS

The spectral statistics of the solar radiation data are analyzed

in this paper. A variance-based test statistic T (x; f), shown to

be F-distributed, is introduced for RFI identification. The RFI

identification procedure is developed based on the confidence

interval of our derived statistics of T (x; f). The proposed

identifier is of low-complexity and performs remarkably well

on solar data collected by our FST system.
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Fig. 2. Experiment results for RFI mitigation (Set 1)
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(c) The test statistic T (x; fk) (for RFI identification)
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Fig. 3. Experiment results for RFI mitigation (Set 2)
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