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ABSTRACT

In this paper, we consider land vehicle positioning in an urban en-
vironment. A nonlinear and non-Gaussian model is derived as the
process model whereas GPS pseudo-range and odometer measure-
ments are used as observations. A parametric model is proposed
for representing the variations of the observation noise covariance
matrix. The performances of the derived Gaussian sum filter are
evaluated by using experimental data.

Index Terms— Global Positioning System, Land vehicles, Non-
linear filters, Jump processes

1. INTRODUCTION

Nowadays, the Global Positioning System (GPS) is extensively used
as a navigation system due to its world-wide coverage, low cost, and
accuracy. GPS receivers are commonly installed in vehicle as a key
tool for providing new services to customers such as real-time traffic
information, emergency calls, route guidance, fleet management, or
advanced driving assistance systems [1].

Any vehicle equipped with a GPS receiver can determine its
position in real time by measuring the time delays of signals from
in-view satellites, hence range measurements. Typically, the range
measurements, also called pseudo-ranges, are corrupted by receiver
and satellites clock biases, ephemeris errors, ionospheric and tro-
pospheric delays. These error sources can be reduced or eliminated
by augmentation systems such as differential operation with geosta-
tionary satellites. That is the case of the European augmentation of
GPS named EGNOS (European Geostationary Overlay Service).

However, there are many situations where a GPS solution is ei-
ther unavailable or unreliable. The first case occurs when GPS sig-
nals do not reach the antenna due to shading effects resulting from
high rise buildings and underpasses present in an urban environment.
The second situation arises from poor satellite geometry and the mul-
tiple reflections of signals leading to multipath, which is a local phe-
nomenon unsolvable by augmentation operations.

Multipath is certainly the major problem limiting the accuracy of
a GPS solution in an urban environment. Several solutions have been
proposed for mitigating the multipath effects. They are aimed either
to recover the unbiased propagation delay or to compensate for the
induced errors on GPS measurements. A wide range of techniques
has been proposed in the first case. Some of these techniques require
modifying the receiver architecture [2]. Other approaches jointly
estimate the direct and reflected signal parameters [3].

In this paper, we address the positioning of a land vehicle in an
urban environment by using nonlinear filtering techniques. Several
previous works apply such filtering techniques to land vehicle posi-
tioning, Extended Kalman Filter (EKF) and Particle Filter being the
filtering techniques commonly used [4, 5, 6].
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Obtaining good estimates in the EKF framework requires a good
knowledge on both dynamic process and measurement models, in
addition to the assumption that both the process and measurement
are corrupted by zero-mean white noises. The divergence due to
modelling errors is a critical problem in Kalman filter applications.
If the theoretical behavior of a filter and its actual behavior do not
agree, divergence may occur. In Kalman filtering, the system model,
system initial conditions, and noise characteristics have to be speci-
fied a priori. In various circumstances, there are uncertainties in the
system model and noise description, and the assumptions on the sta-
tistics of disturbances are violated [7]. To prevent divergence prob-
lems due to modelling errors using the EKF approach, the adaptive
filter algorithm has been one of the strategies considered for estimat-
ing the state vector [4, 8]. On the other hand performance degrada-
tion occurs when the actual noises are not Gaussian. In this case, the
use of Gaussian Sum filtering approach is required [9]. In such ap-
proach, instead of using a single EKF, several EKFs are considered
in parallel.

In this paper, we model the land vehicle positioning as a non-
linear and non-Gaussian problem. So, we make use of a Gaussian
Sum Filter (GSF). We also point out a relation between the carrier-
to-noise ratio (C/No) and multipaths. We derive a kind of adaptive
GSF controlled by the C/No. Note that, due to economical issues, a
major constraint of this work was to carry out a device that does not
significantly increase the price of a standard GPS receiver. As a con-
sequence, in addition to the GPS receiver, we make use of only one
sensor, the odometer. Moreover, contrary to what is usually done
(see [6, 10] for example), we make use of pseudo-ranges instead of
positions delivered by the GPS receiver.

2. SYSTEM MODELS

In this section, we denote by εx a zero-mean Gaussian noise associ-
ated with the process x.

2.1. Vehicle motion model

Let us consider a vehicle located at each time t by the triple (xt, yt, zt)
given as ENU (East-North-Up) coordinates. Its motion in the hori-
zontal plan can be described as follows:

xt = xt−1 + cos(θt−1)vt−1ΔT (1)

yt = yt−1 + sin(θt−1)vt−1ΔT (2)

where, θt et vt denote respectively the vehicle heading and speed,
ΔT being the sampling period. Notice that the vehicle motion in the
horizontal plan is controlled by the driver. However, on the vertical
plan, the vehicle undergoes the altitude variations inherent to the
geographical area. These variations are slopes which can be viewed
as random. Then a random walk can be sufficient for modelling such
a motion. The vehicle speed can also be modelled in the same way:

zt = zt−1 + εz
t . (3)
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vt = vt−1 + εv
t . (4)

Usually, the heading variations are modelled using steering angle [6],
which is observed by means of a steering sensor. Such a sensor being
out of the specifications of this work, we model heading variations
by means of jumping processes:

θt = θt−1 + εθ
t + aθ

t ΔNθ
t , (5)

aθ
t being an uniform white noise on [−θmax, θmax] representing a

new heading and ΔNθ
t a Poisson jump with frequency β correspond-

ing to the frequency of heading change. Indeed, in an urban environ-
ment, one can consider that the vehicle trajectory is constituted with
straight lines. Its heading can be viewed as nearly constant by por-
tion of trajectory.

2.2. Sensor models

The vehicle motion is measured through two sensors: an odometer
and a GPS receiver. The later can be configured to receive at the
same frequency the odometer pulses and the pseudo-range measure-
ments. For a given measurement period ΔT , the number nt of the
odometer pulses are related to the vehicle speed as follows:

nt =
ΔT

gt
vt + εn

t (6)

εn
t being the observation noise modelled as white Gaussian and gt a

possibly unknown scale factor modelled as:

gt = gt−1 + εg
t . (7)

The pseudo-range measurements once corrected from ionospheric
and tropospheric delay and from satellite clock bias are given by:

ρk
t =

q
(Xk

t − Xt)2 + (Y k
t − Yt)2 + (Zk

t − Zt)2 + cht + ek
t ,

(8)
(Xk

t , Y k
t , Zk

t ) being the ECEF satellite coordinates, c the light speed,
ht the receiver clock bias, and ek

t the residual noise viewed as the
sum of an observation noise and a possible bias due to the multipath
phenomenon.

By denoting dt the clock drift, a second order model is used for
describing the clock behavior:

ht = ht−1 + dt−1ΔT + ΔTεh
t , (9)

dt = dt−1 + ΔTεd
t . (10)

In order to take the presence of multipath bias into account, the resid-
ual noise ek

t can be viewed as a white Gaussian noise with a time
varying variance. Notice that multipaths appearance and disappear-
ance can induce a variation of the power of the received signal. The
quality of this signal is in particular given by the measurement of the
C/No ratio. Hence, a link can be established between this measure
and the variance of the residual noise. We suggest representing ek

t

as a white Gaussian noise with variance α10− sk
t

10 , with sk
t the C/No

ratio and α a tuning parameter, or equivalently, as ek
t = 10− sk

t
20 εk

t ,
with εk

t a white Gaussian noise with variance α.

2.3. State model

In ECEF (Earth Centred Earth Fixed) coordinates, the vehicle mo-
tion can equivalently be modelled as0

@Xt

Yt

Zt

1
A =

0
@Xt−1

Yt−1

Zt−1

1
A + A

0
@cos(θt−1)vt−1ΔT

sin(θt−1)vt−1ΔT
εz
t

1
A (11)

where A, the matrix allowing conversion of coordinates from ENU
(xt, yt, zt) to ECEF (Xt, Yt, Zt), is given by:

A =

0
@− sin(λ) − sin(φ) cos(λ) cos(φ) cos(λ)

cos(λ) − sin(φ) sin(λ) cos(φ) sin(λ)
0 cos(φ) sin(φ)

1
A , (12)

φ = arctan
Zr√

X2
r + Y 2

r

, λ = arctan
Yr

Xr
. (13)

(Xr, Yr, Zr) being the ECEF coordinates of a local reference point.
By defining the state vector as: xt = (Xt Yt Zt θt vt gt dt ht),
according to the values taken by the Poisson jump ΔNθ

t two predic-
tion models can be considered with the a priori probability πj , with
j = 1, 2 and π1 + π2 = 1:

xt = f(xt−1) + Bwj
t (14)

with:

f(xt−1) =

0
BBBBBBBBB@

Xt−1 + gX(θt−1)vt−1ΔT
Yt−1 + gY (θt−1)vt−1ΔT
Zt−1 + gZ(θt−1)vt−1ΔT

θt−1

vt−1

gt−1

dt−1

ht−1 + dt−1ΔT

1
CCCCCCCCCA

gX(θt−1) = − sin(λ) cos(θt−1) − sin(φ) cos(λ) sin(θt−1)

gY (θt−1) = cos(λ) cos(θt−1) + sin(φ) sin(λ) sin(θt−1)

gZ(θt−1) = cos(φ) sin(θt−1)vt−1ΔT

B =

0
@b(φ, λ) 0 0

0 I3 0
0 0 I2ΔT

1
A , b(φ, λ) =

0
@cos(φ) cos(λ)

cos(φ) sin(λ)
sin(φ)

1
A

wj
t =

`
εz
t εθ,j

t εv
t εg

t εd
t εh

t

´T
.

Notice that all the noises εz
t , εθ,1

t , εθ,2
t , εv

t , εd
t , εh

t , and εg
t are white

Gaussian with zero mean with the respective variances σ2
z , σ2

θ , σ2
θ +

θ2
max
3

, σ2
v , σ2

d, σ2
h, and σ2

g .
The observation model constructed from equations (6) and (8) is

given by:
yt = m(xt) + Ctzt, (15)

where yt =
`
nt ρ1

t ρ2
t · · · ρK

t

´T
, K being the number of

observed satellites,

m(xt) =

0
BBB@

ΔT
gt

vtp
(X1

t − Xt)2 + (Y 1
t − Yt)2 + (Z1

t − Zt)2 + cht

...p
(XK

t − Xt)2 + (Y K
t − Yt)2 + (ZK

t − Zt)2 + cht

1
CCCA ,

zt =
“
εn
t ε1t · · · εK

t

”T

, Ct = diag

„
1, 10− s1t

20 , · · · , 10− sK
t
20

«
.

In summary the system state model is as follows:

j
xt = f(xt−1) + Bwt

yt = m(xt) + Ctzt
(16)

where
wt ∼ π1Γ(wt,Q1) + π2Γ(wt,Q2), (17)

zt ∼ Γ(zt,R), (18)
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Γ(a,C), a ∈ �N×1, C ∈ �N×N , denoting a multivariate Gaussian
distribution with zero mean and covariance matrix C. The covari-
ance matrices are given by:

Q1 = diag
`
σ2

z , σ2
θ , σ2

v, σ2
g , σ2

d, σ2
h

´
Q2 = diag(

`
σ2

z , (σ2
θ + θ2

max/3), σ2
v, σ2

g , σ2
d, σ2

h

´
R = diag

`
σ2

n, α, α, · · · , α
´

where diag(.) denotes the operator that forms a diagonal matrix with
the vector in argument. Recall that K denotes the number of ob-
served satellites, which is time varying.

3. GAUSSIAN SUM FILTERS

The sum of Gaussian structure is a general structure for filtering
nonlinear systems in non-Gaussian disturbances and noise [9]. As
described in (17), the process noise is given by a mixture of two
Gaussians. According to (16), we get:

p(xt|xt−1) =

2X
j=1

πjΓ(xt − f(xt−1),BQjB
T )

and p(yt|xt) = Γ(yt −m(xt),Rt). At time zero, our prior knowl-

edge about x0 is summarized by p(x0) =
NP

n=1

μn
0 Γ(x0 − x̄n

0 ,Pn
0 ),

with
NP

n=1

μn
0 = 1. Assuming that, at time t−1, the prior distribution

can be expressed as

p(xt−1|y1:t−1) =

NX
n=1

μn
t−1Γ(xt−1 − xn

t−1|t−1,P
n
t−1|t−1),

with
NP

n=1

μn
t−1 = 1, we get:

p(xt|y1:t−1) =

Z
�8

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1

=

2X
j=1

NX
n=1

πjμ
n
t−1Γ(xt − xn

t|t−1,P
n,j
t|t−1),

with:

xn
t|t−1 = f(xn

t−1|t−1) (19)

Pn,j
t|t−1 = F(xn

t−1|t−1)P
n
t−1|t−1F(xn

t−1|t−1)
T + BQjB

T
(20)

F(xn
t−1|t−1) being the Jacobian of f(.) evaluated at xn

t−1|t−1. After
the arrival of yt, the posterior distribution can be expressed as

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)R

�8 p(yt|xt)p(xt|y1:t−1)dxt

∝
2X

j=1

NX
n=1

πjμ
n
t−1Γ(yt − m(xn

t|t−1),S
n,j)Γ(xt − xn,j

t|t ,Pn,j
t|t )

with:

Sn,j = M(xn
t|t−1)P

n,j
t|t−1M(xn

t|t−1)
T + CtRCT

t (21)

Kn,j = M(xn
t|t−1)P

n,j
t|t−1

“
Sn,j

”−1

(22)

xn,j
t|t = xn

t|t−1 + Kn,j
t

`
yt − m(xn

t|t−1)
´

(23)

Pn,j
t|t = Pn,j

t|t−1 − Kn,jM(xn
t|t−1)P

n,j
t|t−1 (24)

M(xn
t|t−1) being the Jacobian matrix associated with m(.) and eval-

uated at xn
t|t−1. Then, after normalization, the posterior distribu-

tion is given by p(xt|y1:t) �
2P

j=1

NP
n=1

μn,j
t Γ(xt −xn,j

t|t ,Pn,j
t|t ), with

μn,j
t =

πjμn
t−1Γ(yt−m(xn

t|t−1),Sn,j)

2P

i=1

NP

n=1
μn

t−1Γ(yt−m(xn
t|t−1),Sn,i)

. One can note that the

number of mixands grows exponentially with the arrival of new ob-
servations. In practice, in order to limit the increase in the number
of these mixands, a stage of selection can be necessary. Thus, for
keeping this number equals to N , at each time, the Gaussians having
the greatest weights should be selected, before an additional normal-
ization step.

4. GPS POSITIONING EXPERIMENTS

In this section we describe our experimental results. Tests have been
carried out in a district of Toulouse (France). The experimental field
included an area of good visibility with no building or other big
object in the vicinity and comprising a very broad avenue, a sec-
ond area bordered of tall trees and buildings and comprising narrow
streets, and a third area having broader streets but high buildings in
the neighborhoods and some trees. Multipaths occur mainly in the
two last areas. The collected data set is a very rich data set that has
information with different GPS cover scenarios.

The vehicle was equipped with a μblox TIM-LR GPS receiver,
a GPS Trimble 39265-50 3V polarized RHCP antenna, an odome-
ter connected to the GPS receiver, and a computer for data saving.
The measurement frequency was set to 4 Hz. Raw data were post-
processed using the EUROCONTROL PEGASUS software for ap-
plying ionospheric, tropospheric, and satellite clock corrections.

The following settings were considered for the GSFs:

• π1 = 0.95, π2 = 0.05, θmax = π/8, σθ = θmax × 10−7,
σz = 0.01m, σv = 1m/s, σd = 10−4, σh = 10−4, σg =
10−5, σn = 1, N = 20, ΔT = 0.25s.

We first evaluate the effect of the observation noise covariance ma-
trix modelling. We denote by GSF-FV(γ), the GSF with fixed val-
ues of the observation noise variance, i.e. Ct = IK+1 and R =
diag

`
σ2

n, γ, · · · , γ
´
. We compare GSF-FV(γ) for different values

of γ with GSF in Figure 1.
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Fig. 1. Comparison of the positioning error between GSF-FV (γ)
and GSF

For GSF, α was set equal to α = 105. One can note that in
general GSF-FV(γ), due to a fixed value of the observation noise
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covariance matrix, gives worst results than GSF with the proposed
modelling. GSF allows avoiding or at least reducing some position-
ing error jumps.

Now, we evaluate the GSF algorithm by considering different
values of α. Figure 2 depicts the positioning error obtained when
using GSF for different values of α. One can note that no value of α
guarantees the best performance at each time.
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Fig. 2. GSF Positioning error according to α.

However, if one is interested with the mean performances, one
can note that α = 105 and α = 106 give the best results (see Fig 3).
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Fig. 3. Cumulative Distribution Function of the positioning error.

We also note that GSF outperforms standard GPS solution and
GPS coupled with EGNOS solution. In Figure 4, we can see that
GSF allows avoiding or reducing some jumps.

5. CONCLUSION

In this paper we have presented a land vehicle positioning method
based on GPS pseudo-range and odometer measurements. The pro-
posed method makes use of the carrier-to-noise ratio in order to
control the covariance matrix associated with the observation noise.
Such an approach allows mitigating multipaths errors. The proposed
method was evaluated by the experimentation of a land vehicle in an
urban environment. The results showed that the positioning accuracy
is significantly improved compared to conventional GPS solutions.
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Fig. 4. Comparison of GSF with standard algorithms.
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