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ABSTRACT
Pulse compression radar systems make use of transmit code se-

quences and receive filters that are specially designed to achieve

good range resolution and target detection capability at practically

acceptable transmit peak power levels. The present paper is a con-

tribution to the literature on the problem of designing transmit codes

and receive filters for radar. In a nutshell: the main goal of this pa-

per, which considers the cases of both negligible and non-negligible

Doppler shifts, is to show how to design the receive filter (including

its length) and the transmit code sequence via the optimization of a

number of relevant metrics considered separately or in combination.

The paper also contains several numerical studies whose aim is to

illustrate the performance of the proposed designs.

Index Terms— Pulse compression methods

1. INTRODUCTION AND PRELIMINARIES
Let N denote the number of subpulses and let {sn}N

n=1 be the modu-

lating code sequence. Let {yn}2M+N
n=1 , where M is a user parameter,

denote the window of the received data sequence that is temporally

aligned with the return from the range bin of current interest. Then:
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where 0M denotes an M × 1 all-zero vector, {εn} denote the noise

samples, {αk} are complex-valued scalars proportional to the radar

cross sections (RCS’s) of the range bins, and α0 corresponds to the

range bin of current interest. Obviously, equations similar to (1) can

be written for other range bins by picking up the right segment of the

received sequence. Note that (1) assumes that there is no Doppler

shift. This assumption will be relaxed in Section 4.

One of the most commonly used methods for estimating {αk} is

based on matched filtering (MF) (with M = 0): α̂0 =

PN
n=1 s∗nynPN
n=1 |sn|2

,

where (·)∗ denotes the conjugate transpose. This is the least-squares

estimate of α0 in (1), which has good statistical properties only if the

vector multiplying α0 in (1) is (nearly) orthogonal to the other vec-

tors in that equation. However, the design of sequences with such

properties, under the constant modulus constraint, is difficult. We

present in this paper pulse compression approaches whose perfor-

mances can be better than that of MF by several orders of magnitude.

2. PROBLEM FORMULATION
For n = 1, · · · , M + N − 1, let

Jn =

2
66666664

n+1z }| {
1 0

. . .

1

0

3
77777775

= JT
−n, (2)

denote the (2M + N) × (2M + N) shift matrix, and let

s =
ˆ

0T
M s1 · · · sN 0T

M

˜T
, (3)

where (·)T denotes the transpose. Then (1) becomes:

y = α0s +

M+N−1X
k=−M−N+1,k �=0

αkJks + ε. (4)

Assume that E{εε∗} = σ2I, where E{·} denotes the expectation

operator. In some cases, (4) could be written in a simplified form;

for instance, for the range bins near (far away from) the radar sys-

tem, α1, α2, etc. (α−1, α−2, etc.) might be known to be equal to

zero. However, for operational simplicity, we will consider the same

designed receiver filter and, of course, code sequence for all range
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bins in the area illuminated by the radar system, and consequently

we will use the general model in (4) for all these range bins.

We consider estimating α0 via the instrumental variables (IV)
method. The IV estimate of α0 is given by:

α̂0 =
x∗y
x∗s

, (5)

where x is a (2M + N) × 1 vector of “instrumental variables”

(clearly, (5) reduces to the MF-estimate of α0 for x = s).

Our main problem in this paper is to choose the user’s param-

eters x, M , and s in such a way that the estimation errors in α̂0

are minimized. We will only consider data-independent designs for

these user’s parameters, based on the following metrics:

• Integrated sidelobe level (ISL):

ISL =

PM+N−1
k=−M−N+1,k �=0 |x∗Jks|2

|x∗s|2 , (6)

• Peak sidelobe level (PSL):

PSL = max
k �=0

|x∗Jks|2
|x∗s|2 , (7)

• Inverse signal-to-noise ratio (ISNR):

ISNR =
‖x‖2

|x∗s|2 , (8)

where ‖·‖ denotes the Euclidean norm.

Minimum PSL designs have been considered in [1] - [3]. We focus

here on the use of ISL and ISNR.

3. NEGLIGIBLE DOPPLER CASE
3.1. Minimum-ISL Design
Cosider minimizing the ISL with respect to x (for fixed s):

min
x

PM+N−1
k=−M−N+1,k �=0 |x∗Jks|2

|x∗s|2 . (9)

Let

R =

M+N−1X
k=−M−N+1,k �=0

Jkss
∗J∗

k. (10)

Using this notation, we can rewrite (9) in a more compact form:

min
x

x∗Rx

|x∗s|2 . (11)

We can prove (all proofs omitted) that the matrix R is strictly posi-
tive definite. Let R1/2 (R−1/2) denote a Hermitian square root of R
(of R−1). Then, by the Cauchy-Schwartz inequality, we have that:

|x∗s|2 =
˛̨̨
x∗R1/2R−1/2s

˛̨̨2
≤ (x∗Rx)(s∗R−1s). (12)

This observation implies that:

ISL =
x∗Rx

|x∗s|2 ≥ 1

s∗R−1s
, (13)

where the lower bound is achieved for:

xo = R−1s (or a scaled version thereof). (14)

The minimum value of ISL corresponding to (14) is given by:

ISL
o =

1

s∗R−1s
. (15)

We can prove that: ISLo decreases monotonically as M increases.
Among other things, this property will help us choose the value of

M for the design discussed next.

3.2. Minimum ISNR - Constrained ISL Design
First we specify the values of N and of the desired ISL, which we

denote by η. We can choose N so that ISNRMF takes on a reason-

ably small value; while this value depends on the application, an

ISNRMF equal to -10 dB or smaller appears satisfactory for many

cases. Regarding η, we can, for instance, choose this parameter such

that η/[2(M + N)] is around -50 dB.

Next, for the selected value of N and for a “good” code se-

quence {sn} (for instance the sequence that minimizes the ISLo in

(15)), we compute ISLo for increasing values of M until we reach a

value ISLo < η. Depending on the value of η and on the practical

constraints on M , we may want to choose an M for which ISLo is

quite a bit smaller than η, if possible.

Finally, given the values of N , η, and M chosen as outlined

above, and for all 2N possible binary sequences {sn} (assuming

that we also want to optimize the code sequence; otherwise {sn}
is given by the sequence used to select M ), we solve the following

constrained minimization problem:

min
x

ISNR s.t. ISL ≤ η. (16)

The sequence s that gives the minimum value of ISNR, let us say so,

and the corresponding solution to (16), let us say xo, are chosen as

the optimal code sequence and optimal IV filter.

To solve (16), we first note that a scaling of x does not change

either ISNR or ISL. Then there is no restriction to assume:

x∗s = ‖s‖2
(17)

(which is the value of x∗s corresponding to the MF). Under (17), we

can reformulate the IV filter design in (16) as follows:

min
x

‖x‖2
(18)

s.t. x∗s = ‖s‖2
(19)

x∗Rx ≤ η‖s‖4. (20)

This is a convex optimization problem that can be efficiently solved

by using the Lagrange multiplier methodology (see, e.g., [4]).

4. NON-NEGLIGIBLE DOPPLER CASE
When some of the targets illuminated by the radar are moving

rapidly with unknown velocities and directions, then their Doppler

shifts must be taken into account in the data model and the ensuing

analysis. Specifically, let {ωk}M+N−1
k=−M−N+1 be the Doppler shifts

(expressed in radians per second) associated with the range bins

under consideration and let

s(ω) =
ˆ

0T
M s1e

jω · · · sNejNω 0T
M

˜T
(21)

denote a generic Doppler shifted zero-padded code sequence vector.

Then (4) should be modified as:

y = α0s(ω0) +

M+N−1X
k=−M−N+1,k �=0

αkJks(ωk) + ε. (22)
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The ISL and ISNR metrics associated with (22) are given by:

ISLD =

M+N−1X
k=−M−N+1,k �=0

|x∗(ω0)Jks(ωk)|2
|x∗(ω0)s(ω0)|2

, (23)

and, respectively,

ISNRD =
‖x(ω0)‖2

|x∗(ω0)s(ω0)|2
, (24)

where the IV vector depends now on ω0.

Let Ω = [ωa, ωb]; ωb > ωa denote a given interval of pos-

sible values of ω0 and {ωk} [5]). Because we do not assume any

knowledge about {ωk}, other than that they belong to Ω, the ISL

metric in (23) cannot be evaluated as it stands. A natural way of cir-

cumventing this problem consists of replacing the said metric with

the following averaged version of it, over the interval Ω,

ISLD =

M+N−1X
k=−M−N+1,k �=0

„
1

ωb − ωa

« R
Ω
|x∗(ω0)Jks(ω)|2 dω

|x∗(ω0)s(ω0)|2
.

(25)

Let

Γ =
1

ωb − ωa

Z
Ω

s(ω)s∗(ω)dω. (26)

It follows that:

ISLD =
x∗(ω0)RDx(ω0)

|x∗(ω0)s(ω0)|2
, (27)

where

RD =

M+N−1X
k=−M−N+1,k �=0

JkΓJ∗
k. (28)

For a given ω0, the ISL and ISNR metrics above have the same form

as the corresponding metrics used in the negligible-Doppler case,

with the only minor difference that R in (11) is replaced by RD in

(27). Consequently, both the minimum-ISLD design and the minimum
ISNRD-constrained ISLD design can be efficiently obtained using the

methods described in the previous section.

5. NUMERICAL CASE STUDIES AND REMARKS
We discuss first a negligible-Doppler case and then a case in which

the Doppler shift can no longer be neglected. In the numerical stud-

ies of this section we focus on the use of binary sequences {sn}N
n=1

where N = 16.

5.1. Negligible-Doppler Case
We consider the MF design and the following two minimum-ISL de-
signs (for given values of N and M ):

• x1 = s1, where s1 is the zero-padded binary sequence that

minimizes the ISL of MF: s1 = arg min
s

s∗Rs, (29)

• x2 = R−1s1, (30)

• x3 = R−1s2, where s2 is the zero-padded binary sequence

that minimizes the ISL of IV: s2 = arg max
s

s∗R−1s. (31)

We also consider two minimum ISNR-constrained ISL designs (once

again, for given values of N and M ):

• x4 = the solution to the design problem in (16) for s = s2

and η = ISL(x3) + 35 dB, (32)

• x5 = defined similarly to x4, but with s equal to the

zero-padded binary sequence that gives the smallest value

of ISNR among all vectors of s for which x4 exists. (33)

The ISL and ISNR metrics, as functions of M , corresponding to the

above five designs are shown in Figure 1. The results presented in

the figure allow us to make a number of relevant observations on the

behavior of the designs under consideration:

(i) As M increases, the ISL metrics associated with the IV designs

x2 and x3 take on much smaller values than the values cor-

responding to the MF design x1, at the cost of a relatively

minor loss in ISNR. As an example, ISL(x3) for M = 80 is

smaller than ISL(x1) by some 100 dB, whereas the ISNR loss

of x3 compared with x1 is only 1.70 dB.

(ii) The ISL performance of x3 is much better than that of x2,

which shows the importance of designing the probing se-

quence {sn} in addition to designing the receive filter x.

(iii) The designs x4 and x5 have been computed only for M ≥ 60
because their associated ISL (which is equal to ISL(x3)+35
dB as explained above) was considered to be “too large” for

smaller values of M (see Figure 1). The imposed ISL loss of

35 dB, compared with x3, results in an ISNR gain of 0.65 dB

for x5– hence reducing the ISNR loss compared with MF to

1.03 dB.

The above remarks and observations suggest the following recom-
mendations. In a scenario in which the ISL is the key features, ISNR

being less important, we can think of using x3 with a relatively small

value of N and with an M several times larger than N . On the other

hand, if ISNR is deemed to be an important feature, we can use x5

to tradeoff an ISL loss for an ISNR gain, possibly with a larger value

of N than that recommendable for the previous scenario.

5.2. Non-Negligible Doppler Case
Let

Δω = Φ
“ π

180◦

” „
1

N

«
(34)

and Ω = [−Δω, Δω]. It follows that Φ is the maximum considered

Doppler shift (in degrees) over the length of the code sequence. Note

that the value of Φ = 10◦ is analogous to the Doppler shift of a target

with an approximate velocity of Mach 4 illuminated by a 1 μs pulse

from an S-band radar (see, e.g., [6]).

We consider the following minimum-ISLD designs, in addition to

the MF design:

• x1(ω0) = s1(ω0), where s1 is given by (29), (35)

• x6(ω0) = R−1
D s1(ω0), (36)

• x7(ω0) = R−1
D s4(ω0), where s4 is the zero-padded binary

sequence that gives the smallest value of ISL◦
D(ω0) averaged

over the set {0,±Δω}, i.e.
X

ω0∈{0,±Δω}
ISL

◦
D(ω0). (37)

We also consider the following two minimum ISNRD-constrained
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ISLD designs:

• x8(ω0) = the solution to the minimum ISNRD-constrained

ISLD problem with s = s4 (the sequence used by x7(ω0))

and η = ISLD(x6(ω0)) , (38)

• x9(ω0) = defined similarly to x8(ω0) but with s = s5

– the zero-padded binary sequence that gives the smallest

value of ISNRD(ω0) averaged over the set {0,±Δω},

or equivalently, the smallest value of the following

averaged norm:
X

ω0∈{0,±Δω}
||x8(ω0)||2. (39)

Several performance metrics (see below for details), associated with

the above designs, have been computed for ω0 = 0, ω0 = Δω and

ω0 = −Δω. For all designs, the performance metrics have been

observed to be quite insensitive to the value taken by ω0. There-

fore, we will show the results obtained only for ω0 = 0 (the results

corresponding to ω0 = Δω and ω0 = −Δω were almost indistin-

guishable from those for ω0 = 0, in most cases).

Figures 2 shows the ISLD and ISNRD metrics, respectively, as-

sociated with the designs x1, x6, x7, x8 and x9, as functions of M ,

for Φ = 1◦ and 10◦.

The following observations can be made based on the results

shown in the figures:

(i) Much as in the negligible-Doppler case, the ISLD gains of x6

and especially of x7 over x1 become significant as M in-

creases, at the cost of a relatively minor ISNRD loss. The

design x9 can be used to eliminate part of the said ISNRD

loss, and still achieve the same ISLD as x6.

(ii) While the ISNRD values in the figures are in most cases simi-

lar to those encountered in the negligible-Doppler case (with

the exception of x7 for which the ISNRD values are larger

than the corresponding ISNR ones), the ISLD values asso-

ciated with the IV designs are much larger. Moreover, the

larger the value of Φ, the faster the convergence of ISLD to

a constant as M increases. An implication of the latter fact

is that in the non-negligible-Doppler case we should choose

a (much) smaller value of M than in the negligible-Doppler

case.

(iii) The designs x7 and x9, which use optimal sequences {sn},

perform better than the corresponding designs x6 and x8, re-

spectively, which use non-optimal sequences.

Similarly to the conclusion presented at the end of the previous

sub-section, we therefore recommend the use of x7 or x9, depending

on whether the ISL or the ISNR (respectively) is the metric of most

interest. The design x6 was also found to be quite competitive in our

numerical studies, and it may be the recommended design particu-

larly in those cases in which the chosen value of N is too large for

the computation of x7 or x9 to be feasible.

6. CONCLUSIONS
Compared with the previously published work on the subject, the

present contribution is more coherent, more complete, and yet the

approach taken here is generally simpler both conceptually and com-

putationally. The theory and design methods presented should be

useful to several other active sensing applications, such as sonar,

non-destructive testing, seismic exploration, and biomedical imag-

ing.
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Fig. 1. The ISL and ISNR metrics associated with designs x1 − x5,

as functions of M , for N=16.

0 20 40 60 80
60

50

40

30

20

10

0

M

IS
L 

 / 
dB

Φ: 1°, ω0: 0

x1
x6
x7
x8
x9

0 20 40 60 80
15

14

13

12

11

10

9

8

7

6

5

M

IS
N

R
  /

 d
B

Φ: 1°, ω0: 0

x1
x6
x7
x8
x9

0 20 40 60 80
60

50

40

30

20

10

0

M

IS
L 

 / 
dB

Φ: 10°, ω0: 0

x1
x6
x7
x8
x9

0 20 40 60 80
15

14

13

12

11

10

9

8

7

6

5

M

IS
N

R
  /

 d
B

Φ: 10°, ω0: 0

x1
x6
x7
x8
x9

Fig. 2. The ISLD and ISNRD metrics associated with designs x1, x6,

x7, x8 and x9 for Φ = 1◦ and 10◦ for N = 16.
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