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ABSTRACT
Nuclear quadrupole resonance (NQR) is a radio frequency (RF) spec-
troscopic technique, allowing the detection of many high explosives
and narcotics. In practice, NQR is restricted by the low signal-to-
noise ratio of the observed signals, a problem further exacerbated by
the presence of strong RF interference (RFI). The current literature
focuses on the use of conventional, multiple-pulsed NQR (cNQR)
to obtain signals. Here, we investigate an alternative method called
stochastic NQR (sNQR), having many advantages over cNQR, one
of which is the availability of signal-of-interest free samples. We ex-
ploit these samples forming a matched subspace-type detector, able
to ef ciently reduce the in uence of RFI. Further, many of the ideas
already developed for cNQR, including providing robustness to un-
certainties in the assumed complex amplitudes and exploiting the
temperature dependencies of the NQR spectral components, are re-
cast for sNQR. The presented detector is evaluated on both simulated
and measured trinitrotoluene (TNT) data.

Index Terms— Detection, estimation, robust methods, nuclear
quadrupole resonance (NQR).

1. INTRODUCTION

Nuclear quadrupole resonance (NQR) is a solid-state radio frequency
(RF) technique able to detect the presence of quadrupolar nuclei,
such as the 14N nucleus prevalent in many explosives and narcotics
[1, 2]. In conventional NQR (cNQR), multiple-pulse techniques are
most often used to interrogate the sample, with powerful coherent
RF modulated pulses, producing nonlinear responses. An alternative
acquisition method, called stochastic NQR (sNQR), interrogates the
sample using trains of low power coherent pulses, whose phases or
amplitudes are randomized; herein, such pulses are termed stochas-
tic pulses. Providing suf ciently weak stochastic pulses are used,
the NQR system may be treated as linear and time invariant. Thus,
cross-correlation of the observed time domain signal with a white in-
put sequence yields the linear response or free induction decay (FID)
which may be well modeled as a sum of exponentially damped com-
plex sinusoids [2, 3]. In many NQR applications, RF interference
(RFI) can be a major concern and in cNQR extra RFI mitigation of-
ten needs to be employed (see [2, 3] and the references therein). An
important advantage of sNQR is the availability of signal-of-interest
(SOI) free samples which may be exploited for interference rejec-
tion. Further advantages of sNQR, over cNQR, include lower peak
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RF powers, the alleviation of spin-lattice relaxation dependent de-
lays and also the relative ease of exciting larger bandwidths [2, 4]. To
increase the spectral bandwidth of the received sNQR signals, we ac-
quire two or more data points after each stochastic pulse, as opposed
to only a single point, in what is known as multiple-point acquisition
(see [2, 4] for a more detailed description). The resulting correla-
tion domain signal can then be well modeled as an FID with periodi-
cally recurring gaps. Speci cally, if the sample is interrogated with a
stochastic excitation sequence consisting of P stochastic pulses, and
a block ofN samples is acquired after each pulse, then the observed
time domain signal will contain NP samples. Cross-correlation of
the time domain signal with the exciting sequence, yields the cor-
relation domain signal r(t), also consisting of NP samples, which
may be well modeled as a gapped FID, consisting of evenly spaced
blocks of data, sampled at the data dwell time,Dw. The pth correla-
tion domain block may then be written as

rp(t) =

d∑
k=1

αkξt+pTs

k + w(t) ; p = 0, . . . , P − 1

ξk = eiωk(T )−βk , (1)

with t = t0, . . . , tN−1, Ts, d and T denoting the block sampling
time (measured with respect to the center of the stochastic pulse),
the stochastic dwell time, the known number of FID components
and the unknown temperature of the compound under investigation,
respectively. Furthermore, αk, ωk(T ) and βk denote the complex
amplitude, the frequency shifting function and the sinusoidal damp-
ing constant of the kth FID component, respectively. For many com-
pounds, such as TNT, the frequency shifting functions, at likely tem-
peratures of the compound, can be well modeled as [5]

ωk(T ) = ak − bkT, (2)

where ak and bk, for k = 1, . . . , d, are given constants. Finally,
w(t) denotes an additive colored noise, due to thermal (Johnson)
noise and external RFI, where it is here assumed that any known
noise coloring has already been removed (c.f., [3, 6]). It is noted that
the FID will have decayed to negligible levels after ve times the
longest spin-phase memory decay time, here denoted T �

2,max, which
can be assumed approximately known a priori. Therefore, the max-
imum number of correlation blocks that should be used for estima-
tion of the FID parameters are the rst P̃ blocks that correspond
to times less than or equal to 5T �

2,max. A subset of the remaining
P − P̃ blocks, here selected as the last P̆ blocks, can then be used
for interference and noise rejection. In this paper, we assume that
the RFI lies in a low-rank linear interference subspace that can be
estimated from the SOI-free samples. Reminiscent of the presenta-
tions in [7, 8], the interference subspace is then exploited to form a
matched subspace-type detector. We term the resulting algorithm the
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SEAQUER (Subspace-based EvaluAtion of Quadrupole resonance
signals Exploiting Robust methods) detector. Furthermore, similar
to [3, 6], we bene cially exploit the dependencies of the NQR fre-
quencies on temperature when forming SEAQUER. Additionally, it
has been shown to be bene cial to exploit prior knowledge concern-
ing the complex amplitudes of the NQR components [3, 6, 9]; here,
we follow the approach introduced in [9], which allows such infor-
mation to be exploited, but also allows for uncertainty in it.

In the following, (·)T , (·)∗, (·)†, ‖·‖2, Re{·} and E{·} denote
the transpose, the Hermitian transpose, the Moore-Penrose pseu-
doinverse, the two-norm, the real operator and the expectation op-
erator, respectively.

2. THE SEAQUER ALGORITHM

Using (1), the pth data block may be expressed as

r
p
N

�
=

[
rp(t0) . . . rp(tN−1)

]T
= A

p

θ̄
α + w

p
N , (3)

wherew
p
N is de ned similar to r

p
N , and

A
p

θ̄
=

⎡
⎢⎢⎣

ξt0+pTs

1 · · · ξt0+pTs

d
...

. . .
...

ξ
tN−1+pTs

1 · · · ξ
tN−1+pTs

d

⎤
⎥⎥⎦

α =
[

α1 . . . αd

]T
, (4)

with θ̄ =
[

T βT
]T and β =

[
β1 . . . βd

]T denoting the
nonlinear parameter vector and the vector of unknown sinusoidal
dampings, respectively. Thus, the data model for P̃ data blocks can
be written as

rNP̃

�
=

[
(r0

N )T . . . (rP̃−1
N )T

]T

= Hθ̄α + wNP̃ , (5)

wherewNP̃ is de ned similar to rNP̃ , and

Hθ̄ =
[

(A0
θ̄
)T . . . (AP̃−1

θ̄
)T

]T

. (6)

2.1. Exploitation of the Interference Subspace

We further assume that the colored noise term, wNP̃ , may be fac-
tored as

wNP̃ = Sφ + eNP̃ , (7)
with S, φ and eNP̃ denoting the basis for the interference subspace,
the interference subspace weights and an additive white Gaussian
noise, respectively. Thus, (5) may be rewritten as

rNP̃ = Hθ̄α + Sφ + eNP̃ . (8)

We note that the interference subspace will typically be unknown,
and therefore must be estimated from the available data. Such an
estimate may be formed by using the P̆ end correlation domain
data blocks, by rst constructing a NP̃ × (P̆ /P̃ ) data matrix, X̆,
in which each column consists of P̃ end correlation domain data
blocks. Thus, P̆ is selected as an integer multiple of P̃ . The data ma-
trix is then factorized using the singular value decomposition (SVD),
i.e., X̆ = ŬΣ̆V̆

∗, where Σ̆ ∈ RNP̃×P̆ /P̃ is a diagonal matrix with
the singular values arranged in nonincreasing order on its main diag-
onal, and where Ŭ ∈ CNP̃×NP̃ and V̆ ∈ CP̆ /P̃×P̆ /P̃ are unitary
matrices containing the left and right singular vectors, respectively.

The dint dominant left singular vectors may then be used as a basis
for the interference subspace S ∈ CNP̃×dint , i.e.,

S =
[

ŭ1 . . . ŭdint

]
, (9)

where ŭk denotes the kth left singular vector of X̆. If the interfer-
ence consists of a mixture of either sinusoids or damped sinusoids,
then the best choice for dint is as the number of sinusoidal compo-
nents. If no prior knowledge of the number of RFI components is
available, then a reasonable estimate may be obtained by examin-
ing the singular values of X̆. Here, we propose using a minimum
description length (MDL) like rule to select the rank of the interfer-
ence subspace, forming

MDL(k) = Nlog(σk) + (logN)k

dint = arg min
k
{MDL(k)}, (10)

where σk is the kth singular value of the data matrix. We remark
that a proper MDL test could also be formed, but note that the rule
suggested in (10) does not require any knowledge of the probability
density function and offers a fast and often adequate estimate of the
model order. As is well known, the maximum likelihood estimate of
θ =

[
θ̄

T
αT φT

]T

, is given by

θ̂ = arg min
θ

∥∥∥Hθ̄α + Sφ − rNP̃

∥∥∥
2

2
. (11)

Minimizing (11) with respect to φ yields an estimate of φ as

φ̂ = S
∗(rNP̃ −Hθ̄α). (12)

Substituting (12) into (11) yields the compressed minimization

min
α,θ̄

∥∥∥Π⊥
S [Hθ̄α − rNP̃ ]

∥∥∥
2

2
, (13)

where Π
⊥
S = I − SS

∗. Thus, the data and model vectors are pro-
jected onto the space orthogonal to the interference subspace, nulling
the effects of the interference.

2.2. Robust complex amplitude estimation

To exploit the prior knowledge typically available for the complex
amplitudes, we follow an approach similar to the one introduced
in [9], rst factorizing

α = ρκ, (14)
where ρ is the common (real-valued) magnitude scaling due to the
signal power, and κ is the (complex) amplitude vector, normalized
such that its largest magnitude equals unity, containing both the phas-
es and the relative magnitudes of the d complex amplitudes. Remi-
niscent of [9, 10], we here consider the case when the assumed (nor-
malized) amplitude vector, κ̄, as well as the actual (normalized) am-
plitude vector, κ, belong to an uncertainty hypersphere with radius√

ε, i.e., ∥∥∥κ − κ̄

∥∥∥
2

2
≤ ε. (15)

The choice of ε should re ect the uncertainty in the complex am-
plitudes, typically obtained as a result of the experimental setup; we
refer the reader to [2, 4, 9] for further discussions on selecting ε. By
restricting the actual (normalized) amplitude vector to this hyper-
sphere, an estimate of the vector best tting the observed data can be
obtained by solving the following constrained minimization

min
κ

∥∥∥Π⊥
S [ρHθ̄κ − rNP̃ ]

∥∥∥
2

2
subject to

∥∥∥κ − κ̄

∥∥∥
2

2
≤ ε, (16)
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Fig. 1. The probability of detection as a function of the ISR, for
pf = 0.05, using simulated data with SNR = −34 dB.

where θ̄ is here assumed known. It is noted that an initial estimate of
ρ is needed to solve (16). By noting that ρ is the largest magnitude
in α, an initial estimate of ρ may be obtained as

ρ̂ = max {|α̂LS |} , (17)

with max {x} denoting the maximum element in the vector x, and
where

α̂LS =
[
H
∗
θ̄
Π
⊥
S Hθ̄

]−1

H
∗
θ̄
Π
⊥
S rNP̃ (18)

is obtained by minimizing (13) with respect toα. Using the SVD to
factorΠ⊥

S Hθ̄ = UΣV
∗, the minimization in (16) can be rewritten

as

min
κ̃

∥∥∥ρ̂Σκ̃ − r̃

∥∥∥
2

2
subject to

∥∥∥V[κ − ˜̄κ]
∥∥∥

2

2
≤ ε, (19)

where r̃ = U
∗
Π
⊥
S rNP̃ , κ̃ = V

∗κ and ˜̄κ = V
∗κ̄. If the uncon-

strained least squares solution of κ̃ is within the feasible region then
it is a solution to (19); however, if this is not the case then the solu-
tion will occur on the boundary of the feasible region and is found
from

min
κ̃

∥∥∥ρ̂Σκ̃ − r̃

∥∥∥
2

2
subject to

∥∥∥V[κ − ˜̄κ]
∥∥∥

2

2
= ε, (20)

which can be solved using the method of Lagrange multipliers. In
the interest of brevity, we refer the reader to [2, 9] for further details
on nding the κ̃ satisfying (19). To ensure that ρ and κ are uniquely
de ned, the robust estimate of κ is formed as

κ̂ =
Vκ̃

max{|Vκ̃|} . (21)

Given κ̂, ρ may be reestimated as

ˆ̂ρ = Re{(Π⊥
S Hθ̄ κ̂)†rNP̃ }. (22)

Forming
α̂ = κ̂ ˆ̂ρ, (23)

and substituting it into (13) yields the residual least squares error

ϕθ̄ =
∥∥∥Π⊥

S (Hθ̄α̂θ̄ − rNP̃ )
∥∥∥

2

2
, (24)
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Fig. 2. The ROC curves for measured data, with (where applicable)
ε = 0.1.

between the model and the observed data, where we have used the
notation α̂θ̄ to stress the dependence of α̂ on θ̄. In general, the non-
linear parameter vector, θ̄, will be unknown and must be estimated
by minimizing ϕθ̄ over θ̄, using a grid search. Thus, for each value
of θ̄, the residual error, ϕθ̄ , is evaluated using (16)–(24). The esti-
mated value of θ̄ is then found as the parameter vector minimizing
this error, i.e.,

ˆ̄θ = arg min
θ̄

ϕθ̄ . (25)

The test statistic is formed as an (approximate) generalized likeli-
hood ratio (GLRT) detector, i.e.,

T (rNP̃ , α̂ˆ̄
θ
) =

r
∗

NP̃
Π
⊥
S rNP̃∥∥Π⊥

S (rNP̃ −Hˆ̄
θ
α̂ˆ̄

θ
)
∥∥2

2

, (26)

where the signal component is deemed present iff T (rNP̃ , α̂ˆ̄
θ
) >

γ, and otherwise not, where γ is a predetermined threshold value
re ecting the acceptable probability of false alarm (pf ). We re-
mark that the so-obtained SEAQUER detector requires a (d + 1)-
dimensional search over the nonlinear parameter space. As noted
in [3, 6, 9], this full search may be well approximated using (d + 1)
one-dimensional searches, which may be iterated to further improve
the tting. We are currently working on deriving the distribution of
the detector, under the null hypothesis, in closed form as a function
of ε and the search space. Therefore, for now, we resort to Monte
Carlo evaluation. Numerical examples in [4] illustrate that when RFI
is absent, the detector has a constant false alarm rate (CFAR) with
respect to the unknown noise variance. When RFI is present, the
detector is approximately CFAR with respect to the unknown RFI
subspace and its power.

3. NUMERICAL EXAMPLES

In this section, we examine the performance of the proposed detec-
tors using both simulated and measured sNQR data. The measured
data consisted of 1000 data les, 500 with TNT present and 500
without, each taking 30 seconds to acquire. The sample, consist-
ing of 180 g creamed monoclinic TNT, was placed inside a shielded
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Table 1. Estimates of sNQR signal parameters for the d = 5 v+

lines of monoclinic TNT, for an excitation frequency of 843 kHz, in
the region of 830-860 kHz.

k 1 2 3 4 5
ωk 1.9567 0.6214 0.1183 -0.0724 -0.7690
βk 0.0401 0.0128 0.0122 0.0192 0.0207
|κk| 0.46 0.25 0.56 1.00 0.80

� κk (rads) -0.1664 2.5218 -2.7135 -2.2918 -0.7020

solenoidal coil and maintained at a temperature of 295.15–296.15K.
A length P = 511 stochastic excitation sequence was used, in which
the phases of the RF pulses were randomized with either 0 or 180◦

phase shifts, using a maximum length binary sequence (MLBS). For
each 30 s data le, this sequence was repeatedly applied, and the re-
sponses from each sequence summed up. Following each stochastic
pulse, N = 64 data points were acquired, whereDw = 2× 10−5s,
yielding a time domain sequence consisting of NP = 32704 sam-
ples. This time-domain signal was then cross-correlated using the
fast Hadamard transform to obtain the correlation domain signal.
Table 1 summarizes the sNQR signal parameters, estimated from a
high SNR signal, obtained by summing around 8 hours of data. The
detectors were also compared on simulated data, designed to mimic
the measured data, which was generated using (1), (2) together with
the temperature shifting function constants for monoclinic TNT (see,
e.g., [5, 6]), and Table 1. RFI components were added to the time-
domain sNQR signal, i.e., before cross-correlation. Similar to the
RFI model used in [3], the RFI is modeled as a set of discrete sinu-
soids whose frequencies and phases are uniformly distributed (over
the interval [−π, π]), and with randomly distributed magnitudes;
here, we used six discrete sinusoids. The interference-to-(noise-free)
NQR signal ratio (ISR) is here de ned as ISR = σ2

Iσ−2
s , where σ2

I

and σ2
s denote the power of the interference and the noise-free sig-

nal, respectively. Furthermore, we de ne SNR = σ2
sσ−2

e , where
σ2

e and σ2
s denote the power of the high-rank (Johnson) noise and

the power of the noise-free signal, respectively. In the examples
using simulated data, the results were obtained from 1500 Monte-
Carlo simulations. Here, we will examine the interference rejection
capabilities of the algorithms. As a reference, we will also com-
pare the presented detector to the correlation domain approximate
maximum likelihood detector (CDAML) and the demodulation ap-
proaches (DMA) [2, 3, 6, 11]. From Table 1, we note that 5T �

2,max
corresponds to around 410 normalized samples; therefore, we have
chosen P̃ = 5. Furthermore, we have selected P̆ = 320. The
SEAQUER, CDAML and DMA-s detectors use a search region over
temperature of [290, 300] K (in 100 steps). Furthermore, the SEA-
QUER and CDAML detectors use a search over each of the d si-
nusoidal dampings of βk = [0.01, 0.05] (in 100 steps). Figure 1
illustrates the probability of detection (pd) as a function of the ISR,
for simulated data with RFI, where the uncertainty in the complex
amplitudes is selected as zero and therefore ε = 0. The gure illus-
trates the bene ts of the proposed SEAQUER algorithm, especially
for ISR ≥ 30 dB, where the effect of increasing the ISR on pd is
negligible. It is noted that for low ISR, the SEAQUER detector per-
forms similarly to the CDAML detector, but with increasing ISR,
the performances of the CDAML and DMA-based detectors deterio-
rate rapidly, as they have no means with which to counter the strong
RFI. As detection is the problem of interest, we nally proceed to

examine the receiver operating characteristic (ROC) curves for the
SEAQUER, CDAML and DMA-detectors, using real data. Figure 2
illustrates these ROC curves, indicating that there is a distinct gain
for the proposed detector even when there is no RFI present in the
data. We remark that the SEAQUER detector, unlike the CDAML
and DMA approaches, is robust to uncertainties in the assumed nor-
malized complex amplitudes.
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