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ABSTRACT

This paper presents a methodology to estimate the param-
eters of two-dimensional damped/undamped exponentials
from high complexity noisy signals, which is the case in 2-D
nuclear magnetic resonance spectroscopy signals. The pro-
posed approach performs adaptive subband decomposition
combined with a classical frequency estimator based on the
Prony model. At each node resulting from the decomposition
tree, a stopping rule is computed in order to decide whether
the decomposition must be continued or not. The rule is a
flatness measure applied on residuals resulting from the esti-
mation step. The method is demonstrated using a simulated
signal.

Index Terms— Multidimensional signal processing,
magnetic resonance spectroscopy, parameter estimation

1. INTRODUCTION

Since the discovery in 1945 of the nuclearmagnetic resonance
(NMR) phenomenon, this technique has become a power-
ful and very successful tool to study structures and molecu-
lar interactions [1]. The multidimensional NMR widens the
field of investigation to the study of macromolecular struc-
tures by allowing the detection and interpretation of interac-
tions that are impossible to analyze along a single dimension
(see e.g. [2, 3]).
In this paper, we consider the problem of estimating the

parameters of two-dimensional NMR signals modeled as a
sum of two-dimensional damped exponentials (also called
modes or resonances). For this issue, several high-resolution
methods have been developed such as 2-D IQML [4], 2-D
MUSIC [5], TLS-Prony [6], Matrix Pencil [7], etc. Neverthe-
less, whatever the method used, its numerical implementation
is problematic. Indeed, in the case of high complexity sig-
nals (large number of samples and/or modes), the algorithms
have to handle very large matrices that must be inverted and
with possible large-order polynomial rooting, resulting in
prohibitive computational cost and memory capacity. So, in

such cases it would be wiser to perform a subband decom-
position before the estimation process itself. This enables
one to transform a complex estimation problem into a set of
sub-problems, each much simpler and more favorable from
a numerical point of view. Moreover, it is known that such
decomposition procedures may enhance the performance of
the spectral estimator used [8, 9]. The purpose of this work is
to present an adaptive subband decomposition scheme com-
bined with a frequency estimator, suitable for the analysis of
two-dimensional damped/undamped sinusoidal signals.
The paper is organized as follows. In the next section, the

model of a 2-D NMR spectroscopy signal is given, together
with an estimation technique. In Section 3, we describe the
proposed approach based on an adaptive subband decomposi-
tion. This method is then demonstrated in Section 4 by using a
simulation signal. Finally, conclusions are given in Section 5.

2. SIGNAL MODELING AND PARAMETER
ESTIMATION

The model of the signals considered here is a combination
of a certain number I of two-dimensional distinct damped
complex exponentials, also called resonances in NMR spec-
troscopy:

d(n, m) =

I∑
i=1

hiz
n
i wm

i + e(n, m), (1)

for n = 0, ..., N − 1 and m = 0, ..., M − 1. Here, zi =
exp(−αx

i + jωx
i ) and wi = exp(−αy

i + jωy
i ) are the com-

ponents of the mode (zi, wi) with amplitude hi (αx
i ≥ 0 and

αy
i ≥ 0). The error term e(n, m) is representative of measure-
ment noise. It is assumed to be a two-dimensional Gaussian
complex white noise. The problem is to estimate the number
of modes I and the set of parameters {zi, wi, hi}I

i=1
, given

the noisy measurements d(n, m).
There are several methods that may be used to solve this

problem. Most of them are derived from the well known
one-dimensional Prony method, which is a linear prediction-
based technique. The reader is referred to [10] and references
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therein for performance comparison between some of these
methods. Without loss of generality, here we choose to use
the 2-D TLS-Prony method developed in [6]. The starting
point of this method is the following form of equation (1) [6]:

d(n, m) =

K∑
k=1

Lk∑
l=1

ak,lp
n
xk

pm
yk,l

+ e(n, m) (2)

=

K∑
k=1

ck,mpn
xk

+ e(n, m), (3)

where

ck,m =

Lk∑
l=1

ak,lp
m
yk,l

, (4)

pxk
is the kth x-mode (x-component of 2-D exponential),

pyk,l
is the k, lth y-mode, ak,l is the k, lth amplitude coef-

ficient and Lk is the number of y-modes corresponding to the
kth x-mode. In order to estimate the 2-D signal parameters,
the idea is to perform a set of 1-D estimation procedures us-
ing (3) and (4). Indeed, it is clear from (3) that the sequence
obtained for a fixed value of m is a 1-D exponential signal
whose parameters may be estimated with a 1-D method.
Generally speaking, use of the so-called high-resolution

techniques to estimate the parameters of a 2-D signal leads
to good performances in terms of precision and resolution,
as compared to that obtained with the classical Fourier trans-
form. Unfortunately, when the number of measurements
and/or the number of signal parameters are large, it is often
difficult to take advantage of their performance because of
implementation problems. For instance, the dimension of the
linear system involved to obtain the parameters pxk

in (3)
is approximately NM × p, where p ≥ K is known as the
prediction order. So it is clear that, in this case, it is necessary
to reduce the underlaying problem complexity by using some
separation techniques such as subband decomposition.

3. SUBBAND DECOMPOSITION

The concept of subband decomposition is used in various
fields of investigation. In the particular domain of spectral
analysis, the advantages of a subband decomposition ap-
proach, have been emphasized by several authors [9, 11–13].
This idea enables one to transform a complex estimation
problem into a set of sub-problems, each being much simpler
than the original.
The decomposition is achieved classically through filter-

ing and decimation stages, but the question remains of how
to perform the decomposition properly. In particular, a ques-
tion that arises is the endpoint of the decomposition. At first,
a tradeoff must be reached between two alternatives. To im-
prove frequency resolution, it is necessary to increase the dec-
imation factor, but the number of data samples reduces as the
decimation gets deeper. Secondly, it would be desirable to

stop the decomposition as soon as all the information is re-
trieved. These remarks suggest using adaptive forms of de-
composition rather than simple uniform ones. In this case,
the decimation is carried out according to the spectral content
of the subbands encountered, but the problem is then to estab-
lish a stopping rule that determines an optimal decomposition
tree (in some sense).
For instance, in [14], the selection of the optimal decom-

position is made by maximizing the number of modes over
the whole decomposition tree. The number of modes lying
in some band being unknown, it has to be estimated using,
say, the minimum description length (MDL) criterion [15].
The problem that arises with such an approach is that it does
not allow to stop the decomposition of empty bands or those
where the modes can easily be retrieved. As an alternative,
we propose to use a stop criterion that reflects the quality of
the estimation in a given subband, that is, a measure of white-
ness of the corresponding residuals. Unlike adaptive decom-
positions using order criteria, the decision about stopping or
following up the decomposition is made after the estimation
process. This allows one to minimize the number of possible
missed components.

3.1. Decomposition of a 2-D Signal

The subband decomposition is achieved by successive filter-
ing and decimation stages as illustrated in Fig. 1. In each
subband (node), the model of the 2-D signal is still a sum of
a (reduced) number of modes which can be estimated by the
TLS-Prony method presented in the previous section.

d(n, m) �

�

��
��

G0,1(z, w) ↓ 2� � d0,1(n, m)

�

��
��

G0,0(z, w) ↓ 2� � d0,0(n, m)

�

��
��

G1,0(z, w) ↓ 2� � d1,0(n, m)

�

��
��

G1,1(z, w) ↓ 2� � d1,1(n, m)

fx

fy

(0, 0) (0, 1)

(1, 0) (1, 1)

Fig. 1. Principle of decomposition of a 2-D signal d(n, m)
into four subbands. Gi,k(z, w) are the frequency responses of
bandpass filters.

Let d′(n, m) be the sub-signal corresponding to a given
node in the decomposition tree, constituted of I ′ 2-D damped
exponentials:

d′(n, m) =
I′∑

i=1

h′

iz
′n
i w′m

i + e′(n, m). (5)

Assume that Î ′ modes (ẑi, ŵ
′

i) are detected and estimated by
the TLS-Prony approach with amplitudes ĥ′

i, and define the
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estimation residuals by the difference between the true sub-
signal and the reconstructed one:

r(n, m) = d′(n, m)−
Î′∑

i=1

ĥ′

iẑ
′n
i ŵ′m

i . (6)

for n = 0, ..., N ′−1 andm = 0, ..., M ′−1. Ideally, if all sub-
signal modes have been correctly retrieved, the residuals are
close to white noise. If one or more modes are missed, then
the signal r(n, m) still contains information. The stopping
rule described below is based on this aspect.

3.2. A Measure of Spectral Flatness

The stopping rule of the decomposition tests for the presence
of some “periodic” component in the residual signal r(n, m).
For that, several statistics may be considered, such as Fisher’s
g-statistic [16], Drouiche’s test for whiteness [17], etc. Here
we use the Drouiche’s measure which is developed for 1-D
sequences.
If we denote by Q̂(ω) the periodogram of a 1-D Gaussian
sequence of length L, then the measure of spectral flatness
(whiteness) is defined by:

Ŵ = log
1

2π

∫ π

−π

Q̂(ω)dω

− 1

2π

∫ π

−π

log Q̂(ω)dω − γ, (7)

where γ = 0.57721 denotes the Euler constant. It can be
shown that Ŵ ≈ 0 for a white noise and Ŵ → ∞ if the
sequence is maximally correlated [17]. In practice, we reject
the whiteness hypothesis if Ŵ > tα, where tα is a threshold
obtained using a significance level α:

tα =

√
2ν0√
L

erf−1(1− 2α), (8)

where ν0 =
√

π2/6− 1, and erf−1(x) is the inverse of the
standard error function

erf(x) =
2√
π

∫ x

0

e−t2dt. (9)

In order to test for the whiteness of the 2-D signal r(n, m),
we should first compute its periodogram defined by:

P̂ ′(ω1, ω2) =

1

N ′M ′

∣∣∣∣∣∣
N ′

−1∑
n=0

M ′
−1∑

m=0

r(n, m)e−jnω1e−jmω2

∣∣∣∣∣∣
2

. (10)

Then, we apply the previousmeasure (7) on the two marginals
of P̂ ′(ω1, ω2) along the two dimensions to obtain Ŵ1 and Ŵ2.
The signal r(n, m) is a white noise only if the two measures
are less than the threshold tα.
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Fig. 2. Power spectrum of the noise-free simulated signal.

4. EXPERIMENTS

The simulation signal is intended to demonstrate the capabil-
ity of the proposed approach to track the spectral subbands
in which information is localized. The signal contains 21
modes. Ten modes are positioned randomly in the lower-left
quarter of the frequency plane (i.e. in the frequency range
[−.5, 0] × [−.5, 0]), and ten other modes in the upper-right
quarter. The last one is located at (.4,−.4). All damping fac-
tors are equal to 0.02 and the amplitudes are generated ran-
domly in the interval [0.5, 3.5]. The variance of the additive
noise is fixed to 10−4. The generated samples form a data
matrix of dimension 256 × 256, whose Fourier transform is
shown in Fig. 2.
The results obtained with a prediction order p = 6, for the

estimation procedure, and a significance level α = 5% are
shown in Fig. 3. One can observe in Fig. 3(a) that the decom-
position is generally deeper in the spectral regions where sev-
eral modes are located. On the other hand, for remote modes,
the decomposition is stopped at an early level. This is the
case for instance with mode (.4, .4). So the method is able
to adapt itself to the local complexity of a signal, allowing
one to reduce the calculation time, as compared to a uniform
decomposition in which several small subbands need to be
analyzed. Moreover, all the modes have been detected. For
example, Figs. 3(b) and 3(c) shows two closely spaced modes
(appearing in distinct subbands) that are correctly estimated.

5. CONCLUSION

In this paper, we have proposed an adapted subband decom-
position approach for the analysis of 2-D NMR data. This
method uses a stopping rule based on a spectral flatness mea-
sure of the subband residuals. If the test for whiteness fails
in a given node, then the decomposition is carried on; other-
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Fig. 3. Some results achieved on the simulated signal.
(a) Representation of the noisy signal with the final spectral
subbands and the number of estimated modes. Reconstructed
contour plot in (b) band [.375, .5] × [.25, .375] and (c) band
[.3125, .375]× [.3125, .375].

wise the decomposition is stopped. The results obtained point
out the advantages of the method over global estimation with
uniform decomposition. Application on real data will be pre-
sented in future work.
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