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ABSTRACT

Human brain activity can be measured with high temporal

resolution by recording the electric potentials on the scalp

surface using imaging methods such as the electroencephalo-

gram (EEG). The analysis of EEG data is difficult due to the

fact that multiple neurons may be simultaneously active and

the potentials from these sources are superimposed on the

limited sensors. It is desirable to unmix the data into signals

representing the behavior of the original individual neurons.

This is a problem of underdetermined blind source separa-

tion (UBSS). Since EEG signals are non-stationary, in this

paper a two-stage UBSS approach is proposed for the sepa-

ration of EEG signals by taking advantage of the high reso-

lution of time-frequency distributions. Experimental results

indicate the effectiveness of the introduced approach at sep-

arating EEG signals in the time-frequency domain compared

with independent component analysis (ICA).

Index Terms— Electroencephalogram, blind source sep-

aration, time-frequency distribution, sparsity

1. INTRODUCTION

The electroencephalogram (EEG) is a recording of the electri-

cal potentials on the scalp, revealing the electrical activity of

the brain tissue. Since there are many simultaneous sources

of electrical activity in the brain, the currents generated by all

of these sources and propagating throughout the head are lin-

early superimposed on one another. Thus, any electrode will

pick up a linear combination of all of the active sources. It is

highly desirable to unmix the recorded data into signals repre-

senting the behaviors of the original individual sources. This

problem is generally called blind source separation (BSS).

In the last several years, there has been much work on

the problem of blind source separation, which has resulted

in many diverse approaches (e.g. [1]). A key assumption of

these algorithms is the statistical independence of the source

signals, which results in independent component analysis (ICA).

ICA has been used extensively in analysis of brain imaging

data including EEG [2]. One condition to apply the ICA tech-

nique to source separation is that the number of independent

signal sources is the same as the number of sensors. How-

ever, since we usually do not know the effective number of

statistically independent brain signals contributing to the EEG

recorded from the scalp, ICA may not be ideally suitable for

performing source separation on EEG signals.

Since there are a limited number of electrode measure-

ments, source separation based on EEG signals is an under-

determined problem. Underdetermined blind source separa-

tion (UBSS) is a challenging problem since the mixing matrix

is not invertible. Therefore, additional a priori information

about the sources is needed to allow for reconstruction. One

increasingly popular and powerful assumption is the sparsity

of the sources for a given basis [3]. Sparse signal represen-

tations lend themselves to good separability of the sources,

because most of the energy of a basis coefficient at any time

instant belongs to a single source.

Since EEG signals are non-stationary and not sufficiently

sparse in the time domain, the time-frequency representations

of underlying signals are used for source separation. Time-

frequency analysis results in high resolution and sparse rep-

resentations of the mixtures. In this paper, we use a two-stage

sparse representation approach for source separation on EEG

signals in the time-frequency domain, and compare its perfor-

mance with that of ICA.

2. BACKGROUND ON TIME-FREQUENCY
ANALYSIS

A time-frequency distribution (TFD), X(t, ω), from Cohen’s

class can be expressed as 1 [4]:

X(t, ω) =

Z Z Z
φ(θ, τ)s(u +

τ

2
)s∗(u − τ

2
)ej(θu−θt−ωτ)du dθ dτ,

(1)

where φ(θ, τ) is called the kernel function and s(t) is the sig-

nal. In this paper, we will use reduced interference distribu-

tion (RID) kernels to minimize the effect of cross terms and

increase the sparsity level.

1All integrals are from −∞ to ∞ unless otherwise stated.
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3. TIME-FREQUENCY BASED SPARSE
REPRESENTATION APPROACH FOR UBSS

In this section, a two-stage approach for the UBSS problem

in the time-frequency domain is presented, in which the first

stage is for determining the mixing matrix, and the second

stage is for estimating the source signals.

3.1. Linear Mixture Model and Assumptions

Assume that the M mixtures, z(t) = [z1(t), z2(t), . . . ,zM (t)]T ,

of the N non-stationary complex source signals, s(t) = [s1(t),
s2(t), . . . , sN (t)]T , are given by z(t) = Bs(t), where B is

the M × N instantaneous mixing matrix (M < N ).

Each mixture, zi(t), is first transformed to the time-fre-

quency plane, and then the corresponding time-frequency dis-

tribution is vectorized to form a matrix of time-frequency dis-

tributions, X. In our source separation problem, the observed

time-frequency distributions, X, can be written as a linear

combination of the original sources’ TFDs, S, assuming the

cross-terms between the sources are negligible by using a

RID: X ≈ B2S = AS, where X = [x1, · · · ,xP ] ∈ RM×P

is the mixtures of the sources, P is the total number of time

and frequency points, A = B2 = [a1, · · · ,aN ] ∈ RM×N

is an unknown mixing matrix, B2 is the element-by-element

square of the mixing matrix in the time domain, and S =
[s1, · · · , sP ] ∈ RN×P is the time-frequency representations

of the N unknown source signals.

3.2. Determination of the Mixing Matrix

Based on the assumption that the source signals are sparse

in the time-frequency domain, there exists many columns of

S with only one nonzero entry. For instance, suppose that

si1 , · · · , siK
are K columns of S, where only the first entry

of each of these columns is nonzero, then we have

Asij = a1s1ij j = 1, · · · ,K, (2)

and

[xi1 , · · · ,xiK
] = A[si1 , · · · , siK

] = [a1s1i1 , · · · ,a1s1iK
],
(3)

where, xij
is the ij th column of X, a1 is the first column of

A, and s1ij
is the first entry of sij

. From equation (3), we see

that each xij is equal to a1 multiplied by a scalar s1ij , which

means that these K column vectors of X, xi1 , · · · ,xiK
, are

distributed along the direction of a1. Thus, ideally after nor-

malization, xi1 , · · · ,xiK
are mapped to a unique vector on

the multidimensional unit circle which is equal to a1. How-

ever, in practice, since the mixture matrix X is not completely

sparse in the time-frequency domain, xi1 , · · · ,xiK are not

exactly in the same direction as a1, but rather in the neighbor-

hood of a1. This means that a1 lies at the center of xi1 , · · · ,
xiK

. Therefore, we use the K-means clustering method to

cluster the column vectors of the mixture matrix X into dif-

ferent clusters, where the center of each cluster corresponds

to one column vector of the mixing matrix A. By doing so,

we can obtain an estimate of the mixing matrix A.

3.3. Estimation of the Source Signals for a Given Mixing
Matrix

After obtaining the estimated mixing matrix, the next stage is

to estimate the source signals. For a given mixing matrix A,

the source signals can be estimated by maximizing the poste-

rior distribution P (S|X,A) of S. Under the assumption that

the prior is Laplacian, maximizing posterior distribution can

be implemented by solving the following optimization prob-

lem [5]:

min

N∑
i=1

P∑
j=1

|sij |, subject to AS = X. (4)

It is not difficult to prove that the optimization problem

(4) is equivalent to the following set of P smaller scale linear

programming (LP) problems:

min

N∑
i=1

|sij |, subject to Asj = xj for j = 1, · · · , P.

(5)

4. EXPERIMENTAL RESULTS ON EEG SIGNALS
AND PERFORMANCE ANALYSIS

In this section, the presented approach is applied to EEG sig-

nals to illustrate its effectiveness to extract sparse source sig-

nals in the time-frequency domain from a few number of mix-

tures. The binomial kernel [4] is used for computing the TFD

with 64 time points and 33 frequency points. The results are

compared to ICA since it is widely used in the analysis of

EEG signals.

4.1. EEG Data Set

The EEG data used in this paper is released by Swartz Cen-

ter for Computational Neuroscience at the University of Cal-

ifornia, San Diego [6]. During a selective visual attention

experiment, stimuli appeared briefly in any of five squares

arrayed horizontally above a central fixation cross. In each

experimental block, one (target) box was differently colored

from the rest. Whenever a square appeared in the target box,

the subject was asked to respond quickly with a right thumb

button press. The data were constructed by concatenating

three-second epochs from one subject, each containing a tar-

get square in the attended location (left locations 1 or 2 only).

The stimulus was repeated 40 times at the two attended lo-

cations resulting in a total of 80 trials per electrode for 32
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electrodes. The sampling rate was 128 Hz. Data from 6 elec-

trodes, F3, F4, Cz, P3, P4, and Oz, are chosen to be used in

our analysis.

4.2. Component Extraction

We first do the source extraction at the single-trial level. Single-

trial source separation accounts for the variability across trials

which is not possible with the average EEG. Since 6 elec-

trodes are used, there are 6 mixtures of sources per trial. For

single-trial source extraction, we first assume the number of

sources to be 8. This number is chosen since higher number

of sources resulted in sources that were too sparse and did not

correspond to actual neuronal activity. ICA is applied to the

same data and can only extract 6 sources from the 6 mixtures.

Both of these BSS techniques are applied to all 80 trials of

data. This decomposition results in 640 and 480 single-trial

components extracted by the proposed method and ICA, re-

spectively. Since it is difficult to do a one-to-one comparison

between the extracted components, we propose to use the fol-

lowing data reduction scheme for evaluation purposes.

In order to evaluate the performance of the proposed me-

thod and ICA, the single-trial results are put together in their

respective groups depending on stimulus type. The 8 ex-

tracted components of trial v are represented by the matrix,

Sv , of size 8 × P , where P is the total number of time and

frequency points and in our case is equal to 2112. For the

data reduction of the extracted components for a particular

stimulus, the extracted components over all trials are each ap-

pended to form a new matrix, S̃u, such that

S̃u =

⎡
⎢⎢⎢⎣

S1

S2

...

S40

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1
1(1) · · · s1

1(2112)
...

...
...

s1
8(1) · · · s1

8(2112)
s2
1(1) · · · s2

1(2112)
...

...
...

s40
8 (1) · · · s40

8 (2112)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where u = {1, 2} represents the locations of the stimulus,

and S̃u is of size 320 × 2112. Each element, sv
i (j), is one

time-frequency point of source i from trial v.

K-means clustering is then carried out on each S̃u where

each of its rows is grouped into one of K clusters based on

the Euclidean distance to the cluster center. The clustering

algorithm is run 10 times to avoid randomness in the final

cluster results, and the algorithm is run for different values of

K at 8, 12, and 16 to determine how the number of clusters

affects the outcome. The rows of S̃u are grouped based on

the results of the 10 K-means runs to create a matrix, R, of

size 320 × 320. The entry, rij , represents how many times,

out of 10, row i of S̃u is grouped into the same cluster as

row j of S̃u. This matrix serves as a similarity measure, the

more times two sources are grouped together by K-means,

the more similar they are. A hierarchical clustering is then

carried out using the similarity matrix, R, as its distance met-

ric to generate K clusters. Cluster centers are calculated by

the mean of the time-frequency components in each cluster,

and these are the components that categorize all single-trial

EEG results. For example, a set of extracted components for

K = 8 are shown in Figs. 1 and 2 for ICA and the proposed

UBSS method, respectively.
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Fig. 1. Components extracted using ICA over all single-trial

results for stimulus location u = 1
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Fig. 2. Components extracted using the proposed UBSS

method over all single-trial results for stimulus location u = 1

4.3. Performance Evaluation

The levels to which the extracted components are sparse, dis-

joint, and localized in the time-frequency domain all speak to

how close they may be to an actual underlying source in the

brain. The components obtained from the clustering method

described in the previous section are evaluated based on these

factors.

Since a sparse component must have most of its values

close to zero, the l1-norm is a good measurement of how

sparse a component is. The extracted clusters are represented

by the K×2112 matrix Cu, u = {1, 2} and each component’s

sparsity is measured with

2112∑
m=1

|cu
i (m)|, (7)
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where u refers to stimulus location, and i represents compo-

nent number between 1 and K.

Disjointness between two components is measured by us-

ing the inner product. A summation of all the pairwise inner

products between K components represents a total level of

disjointness over all extracted components and is computed

by

∑
i�=j

2112∑
m=1

|cu
i (m)cu

j (m)|. (8)

Time-frequency localization of each component is com-

puted using a measurement of entropy. This is calculated as

−
2112∑
m=1

|cu
i (m)| log2|cu

i (m)|. (9)

A smaller entropy value corresponds to a more localized com-

ponent.

The results comparing the proposed UBSS method with

ICA based on these parameters are shown in Tables 1, 2, and

3. Under the proposed approach, the extracted components

are typically more sparse, localized, and disjoint than the ex-

tracted components under ICA. This means that under the

proposed approach, the components are more likely a closer

representation of true sources. In addition, as the value of

K increases, the extracted components are less disjoint from

each other. This shows that some components belonging to

the same source are considered as different sources. Thus, it is

important to correctly choose the number of clusters. Finally,

the extracted components from both methods are projected

back to the electrodes to show the amount of variance of the

original data explained by the sources. From Table 4, we can

see that almost the same amount of variance is explained by

the components extracted from both methods.

Table 1. Mean measure of l1 norm to show sparsity

Running Location 1 (u=1) Location 2 (u=2)

Conditions UBSS ICA UBSS ICA

K=8 23.03 29.06 21.92 27.63

K=12 22.36 28.31 22.54 28.15

K=16 23.29 28.18 22.43 27.27

Table 2. Mean measure of entropy to show time-frequency

localization

Running Location 1 (u=1) Location 2 (u=2)

Conditions UBSS ICA UBSS ICA

K=8 9.80 10.29 9.73 10.25

K=12 9.79 10.25 9.80 10.26

K=16 9.85 10.24 9.81 10.20

Table 3. Measure of disjointness by correlation between com-

ponents

Running Location 1 (u=1) Location 2 (u=2)

Conditions UBSS ICA UBSS ICA

K=8 3.12 3.63 3.84 4.35

K=12 8.92 9.38 8.30 8.90

K=16 14.05 14.51 15.87 16.35

Table 4. Average component projection to electrodes

Running Location 1 (u=1) Location 2 (u=2)

Conditions UBSS ICA UBSS ICA

K=8 0.026 0.039 0.029 0.045

K=12 0.058 0.091 0.065 0.103

K=16 0.129 0.217 0.147 0.246

5. CONCLUSIONS

This paper introduces a two-stage approach for underdeter-

mined blind separation of sparse and non-stationary sources

using TFDs. The performance of the proposed method is

compared to ICA by applying both algorithms to the multiple

trial EEG data set. Data reduction by clustering is performed

over all single-trial results to extract components that repre-

sent the sources. The presented approach provides compo-

nents that are more sparse and localized in the time-frequency

domain and that are more distinct from each other than ICA.

The proposed method can also be used as an effective data

reduction method.
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