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ABSTRACT

In this paper we propose a statistical modeling approach for phase
detection of normal breathing sounds. Previous studies have been
considering only the detection of inspiration mid-points [1] and breath-
ing onset [2]. Here we focus on the detection of both inspiration and
expiration phases. Based on an accurate statistical study of breathing
signals, we suggest a nomenclature of respiratory cycle in a model-
ing perspective by adding a transitional phase between the inspira-
tion and expiration phases. Thus, we put forward a new processing
chain using improved Markov model in a bayesian framework in or-
der to segment the signal and to detect the phases. We adapt the
recent triplet Markov chain by exploiting priors on the respiratory
cycle structure. Experiments on real respiratory signals show en-
couraging results.

Index Terms— Breath sound signals, respiratory phases, signal
segmentation, triplet Markov chain, wavelet packet

1. INTRODUCTION

Pulmonary disease is a major cause of ill-health throughout the world.
The diagnosis of chest infections such as acute bronchitis and pneu-
monia is carried out by pulmonary auscultation using a stethoscope.
This device, invented in 1821 by the French Physician Laennec, is
still the most common diagnostic tool used by doctors. Nevertheless,
stethoscope auscultation can lead to various limitations. Actually, it
is a subjective process that depends on the individual’s own hearing,
experience and ability to differentiate between sound patterns. Ef-
forts have been made to normalize diagnosis methodology and build
up a common framework for all the medical community [3, 4], with
limited success due to a lack of interactivity in the auscultation com-
munity. In this context, much of the knowledge gained in recent
years has resulted from the use of modern digital processing tech-
niques, which bring objective respiratory sound analysis and com-
parisons. Computerized methodology also offers the possibility to
exchange easily the data and the diagnosis, with the prospect of a
standardiziation of methodologies in the medical community. Dur-
ing the Nineties, the CORSA project group (twenty co-workers all
over Europe) worked on the development of guidelines for research
and clinical practice in the field of respiratory sound analysis, in-
cluding reviews of current signal processing methods [5]. The ter-
minology, the nomenclature and the techniques resulting from this
project are now considered as a main reference by both medical and
signal processing community, and have been as well adopted in this
paper.
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The detection of respiratory phases is essential for the automa-
tion of respiratory signal processing. Respiratory phases are cur-
rently detected by an airflowmeasurement [6]. Such methods are not
suitable for current auscultations. Therefore, respiratory phases need
to be detected on the chest signal captured with a digital stethoscope.
Within an appropriate frequency range, the inspiration and the expi-
ration phases can be easily distinguished from each other and from
the noisy background [7]. Thus, previous studies suggest to exploit
the power spectra of both chest and tracheal signals, in order to detect
the midpoints of inspiration phases [1] and the breathing onset [2],
with good rates of detection.

In a scaling and fusion prospect, we need to go further in respi-
ratory sounds analysis, by detecting both inspiratory and expiratory
phases. In this paper, this analysis is performed in the wavelet packet
domain to improve detection accuracy. We suggest a modified res-
piratory signal nomenclature by adding a transitional phase, located
between the respective inspiration and expiration phases. This slight
modification allows us to put forward an appropriate model for the
wavelet coefficients. Detection task is then performed by a segmen-
tation of the signal into three labels i.e, the inspiration, expiration and
transition. A Bayesian framework is adopted, using a constrainted
version of the recent triplet Markov chain model. This model ex-
ploits the respiratory cycle prior information, in order to guide the
algorithm to an accurate phase detection.

In section 2 we give a short review on triplet Markov chain mod-
eling and provide details on our constrainted triplet Markov chain
model. Section 3 describes the algorithm computation in an unsuper-
vised way: the decision process is performed by aMaximal Posterior
Mode (MPM) criterion, while the hyper-parameters are estimated
by a Stochastic Expectation Maximization (SEM). In particular, we
specify how we benefit from priors on respiratory cycle. Results on
real data are then discussed in section 4. Finally, conclusions and
further work are drawn in section 5.

2. MARKOV CHAIN MODELING FOR RESPIRATORY
SIGNAL ANALYSIS

2.1. Triplet Markov chains

Let X = (Xn)1≤n≤N and Y = (Yn)1≤n≤N be two stochastics
processes. X is hidden and takes its value in a finite set Ω =
{ω1, .., ωk}. Y model the observation ({Yn}1≤n≤N ∈ �). The
problem consists in estimating X = x from Y = y. The Hid-
den Markov chain model (HMC) has been widely used in this con-
text [8, 9], because of its adaptability and time performance. How-
ever, the HMC model does not reflect enough the complexity of real
data: in many applications, for instance, the hidden data X to be
restored are not necessarily stationary. That is why, W. Pieczyn-
ski [10, 11] suggested a general model, called triplet Markov chain
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(TMC), based on the three following points:
(i) When X is non stationary, an auxiliary stochastic process U is
introduced, which models the regime switching ofX;
(ii) The pairwise process V = (X, U) is assumed to be Markovian
and stationary. Let us notice, that the variables X and U are not
necessarily Markovian.
(iii) The distribution of Y conditioned on V = (X, U) is such that
the triplet process T = (X, U, Y ) is a Markov chain.

The auxiliary processU takes its value in a setΛ = {λ1, .., λM ).
In this context, the marginal distribution Z = (X, Y ) of the Markov
chain T = (X, U, Y ) models the interaction between the observed
and the hidden process. Finally, the realization of X is deduced
from the restoration of the pairwise process V = (X, U). T being
Markovian, the process (V, Y ) can be viewed as a pairwise Markov
chain (PMC) and allows us to apply the forward-backward recursive
algorithm to it [12]. The distribution of (xn, Y ) is then computed as
follows: p(xn, y) =

P
un∈Λ p(un, xn, y) =

P
un∈Λ p(vn, y)

The final decision onX is obtained through a bayesian approach,
using the Maximal Posterior Mode criterion (MPM) [13]. In this pa-
per, we assume that X is a non stationary process. We suppose that
each component un of the auxiliary variable U = (u1, ..., un) takes
its value in a finite set Λ = {λ1, .., λM}, which governs the regime
switching of X . Thus, M represents the number of homogeneous
states for X . Moreover, we assume that Y1, ..., Yn are independent
conditionally on X , with the condition p(yn|xn, un) = p(yn|xn).
Under our assumptions, T = (V, Y ) becomes a particular TMC, in
which V = (X, U) is a Markov chain. In the next section, we moti-
vate the introduction of our particular TMC model, which is adapted
to the phase detection. We formulate it and outline its computation.

2.2. Adaptative transition matrix

The hidden process X models the phases sequence of the respi-
ratory signal, while Y models the observed data. X belongs to
Ω = {ω1, ω2, ω3}, where ω1, ω2, ω3 represent respectively the tran-
sitional, expiration and inspiration labels. In the next section, we will
detail the observation function. Let us now focus on the modeling
choice for the couple (X, Y ). The respiratory process is very regu-
lar from an auscultation point of view, where only 3 to 5 respiratory
cycles are observed. The same phase (i.e., inspiration-transition-
expiration-transition (ω3, ω1, ω2, ω1)) is observed from cycle to
cycle. In this context, the prior probabilities p(xt = ωk) and transi-
tional probabilities p(xn+1 = ωi|xn = ωj) depend on each instant
n. Such situation is typical for a non-stationary and non-homogeneous
stochastic process. Here, TMCmodel appears to be particularly well
adapted. The marginal parameter U models the different states of
homogeneity on X: at each element of the chain xn, we associate
a state un setting the homogeneous mode for the location n in the
respiratory cycle. We suppose that V = (X, U) is a stationary and
homogeneous Markov chain. T = (V, Y ) is then assumed to be a
TMC as previously defined.

We will now outline our constrained TMC model, which takes
into account the respiratory cycles. As usual, a SEM method is
adopted to estimate the joint probabilityP (U, X) [14, 15]. The main
innovation of our method lies in the intervention of prior knowledge
on the distribution of phases in the respiratory cycle. The respira-
tory cycle appears to be a continuous and deterministic succession
of inspiration, transition and expiration phases. These phases are
regularly spaced: it means that the homogeneity mode on X owns
the same period τ than the respiratory cycle. We wish to adapt our
model to this structure: a strict change in the homogeneity mode
via the auxiliary process U will be imposed at each transition on the

hidden chain X . We introduce the parameter card(Λ) = τ i.e, the
number of homogeneous state inX: it corresponds to the number of
samples in the discrete signal within a cycle. In other words, each
sample xn within a cycle is associated to a mode un. Thus, a con-
tinuous variable transition matrix has to be built: provided that the
homogeneous states are progressively ordered in the set Λ, we force
this transition matrix on U as follows:

Mu =

2
66666666664

0 1 0 · · · · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . 0

0
. . . 1

1 0 · · · · · · · · · 0

3
77777777775

This model properly coincides with the deterministic succession of
phases in the respiratory cycle. Our unsupervised algorithm uses
the SEM estimation framework. At each current iteration q, let us
denote a

[q]
ij , the averaged transition matrix, which is affected to the

process X . a
[q]
ij is estimated by a simple counting on the posterior

realization. For each mode λk, the matrices of transition a
[q]

ij|λk
are

computed by applying a continuous multiplicative constraint to each
column of the averaged matrix. This constraint is modeled by a sinu-
soid c(n) = 1

2
+ a · cos( 2π

τ
n), 0 ≤ a ≤ 1

2
. This function suitably

depicts the distribution of the phases in the cycle. Its frequency is
based on the respiratory cycle of the observed signal, as displayed in
fig. 1. Thus, each mode λk of U corresponds to a unique value of
the sinusoid, scaled in phase with the respiratory signal, so that ck

reaches its maximum value when the probability of having an inspi-
ration phase is the highest (resp. its minimum when this probability
is the lowest). The effects on transitional matrix for mode λk and
iteration q are computed as follows:

â
[q]
ij|λk

=

2
666664

a11
2

a12 · (1− c
[q]
k ) a13 · c

[q]
k

a21
2

a22 · (1− c
[q]
k ) a23 · c

[q]
k

a31
2

a32 · (1− c
[q]
k ) a33 · c

[q]
k

3
777775

(1)

After normalizing (1), we obtain a mode of homogeneity for each
position in the cycle. When the SEM algorithm converges, this
constraint progressively increases through the parameter of ampli-
tude a (fig. 1). In section 3 we provide more details regarding the
implementation of our algorithm and the associated modified SEM
method.

Fig. 1. Constraint value c
[q]
k for mode λk and iteration q
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2.3. Data representation space and observation likelihood

Some previous studies on phase detection [1, 2] have been carried
out in the time-frequency plan, through a local power spectrum anal-
ysis using a Fourier transform. It is well known, that this transform
suffers from a lack of precision and flexibility due to the Gabor-
Heisenberg uncertainty principle. Thus, in order to improve the
detection accuracy, a wavelet packet representation has been intro-
duced. The decomposition based on the so-called Daubechies wavelet
- using 20 filter coefficients - provides a well sparsed representation
for our respiratory signals. These wavelet coefficients are adapted to
our segmentation method.

Although the respiratory phases can be well discriminate within
150 Hz and 300 Hz [3], the frequency band of interest varies ac-
cording to the patient. A whole [150, 300] Hz window analysis can
lead to the overwhelming of the relevant information. So we have
restrained our observation on sharper frequency bands by partition-
ing them into three frequency windows. The sounds we worked on
are sampled at 8000 Hz and wavelet packets of level 6 were selected
to perform detection. This corresponds to a 62.5 Hz resolution per
packet. Wavelet packets covering the following frequency bands are
chosen to perform the segmentation:[125, 187.5] Hz, [187.5, 250]
Hz, [250, 312.5] Hz.

Our statistical studies on these wavelets led us to the conclu-
sion that coefficients within each respiratory phase can be approxi-
mate by an independent normal distribution (which is generally the
case for a noisy bio-signal). To avoid a likelihood distribution over-
lapping and to reduce the noisy effect, we construct an observation
function based on the wavelet packet energy. It is know that the
sum of n squared independent variables, following a normal distri-
bution, leads to a chi-square distribution. Our observation function
fobs(k) depends on the wavelet packet energy on reduced coeffi-
cientswii∈[1..L]

, whereL is the length of the wavelet packet. The en-
ergy window resolution is chosen to be half the length of a standard-
ized transition phase and is adapted to each particular signal. The
observation function is then computed using a 75% window length
overlapping: fobs(k) =

PL
i=1 ∇k(i) × w2

i where ∇k is a n-length
sliding window: ∇k(i) = 1 if E[ (k−1)·n

4
]+1 ≤ i < E[ (k−1)·n

4
]+n

and 0 elsewhere, whereE[x] denotes the integer part of the real num-
ber x.

The observation process Yk is described by fobs(k) i.e, Yk =
fobs(k), and the likelihood p(yk|xk) follows a chi-square distribu-
tion. Given these hypothesis, next section provides an overlook of
our detection method.

3. COMPUTATION OF THE DETECTION METHOD

The restoration of the hidden process X is performed by the MPM
criterion. A generalization of forward-backward probabilities to pair-
wise Markov chain [12] allows us to estimate xn:
x̂n = arg maxxn∈Ω p(xn|y).
The first step consists in estimating the data driven and the prior pa-
rameters. Then, we estimate the three variances Σ = {σ2

1 , σ2
2 , σ2

3},
associated to the segmented classes. The distribution of the station-
ary Markov chain V = (U, X) is driven by the parameters τ and a,
the initial probabilities πv and the mean value aij (section 2.2). The
SEM method exploits the priors on the respiratory cycle structure:

• Initialization: Θ[0] = {Σ[0], τ [0], a[0], π
[0]
v , a

[0]
ij }.

τ [0] is estimated by computing an autocorrelation function on
the wavelet packet. The main energy pics of the autocorrelated signal

coincide with the inspiratory cycle. The parameter τ is initialized by
the mean distance between these pics. However, we have no prior
on the localization of each phase in the cycle. That is why we set
equiprobable values to π

[0]
v and a is initialized to zero, meaning that

every auxiliary state λkk∈{1..M}
are initially gathered in an unique

homogeneous state given by a
[0]
ij .

According to the nomenclature drawn up by a respiratory sound
analysis, the initial respiratory cycle (inspiration, expiration and tran-
sition phase) is equally divided, in the wavelet packets of interests.
Let ai be the fraction of the cycle period τ in each phase ωi. An
average energy ratio bi/j between each couple {ωi, ωj} have also
been estimated. Initialization of Σ is then deduced from the mean
energy of the whole wavelet packet σ2

wav = 1
L

PL
l=1 w2

l by:

8>>>><
>>>>:

σ2
wav =

P3
i=1 ai · (σ̂

[0]
i )2

(σ̂
[0]
3 )2 = b3/2 · (σ̂

[0]
2 )2

(σ̂
[0]
3 )2 = b3/1 · (σ̂

[0]
1 )2

⇒

8>>>><
>>>>:

(σ̂
[0]
1 )2 ≈ 1

5
· σ2

wav

(σ̂
[0]
2 )2 ≈ 2

5
· σ2

wav

(σ̂
[0]
3 )2 ≈ 2 · σ2

wav

With a1 = a2 = a3 = 1
3
, b3/2 = 5 and b3/1 = 10

The same prior are then used for the initialization of aij :

a
[0]
ij =

2
666664

a1·τ−2
a1·τ

1
a1·τ

1
a1·τ

1
a2·τ

a2·τ−1
a2·τ

0

1
a3·τ

0 a3·τ−1
a3·τ

3
777775

=

2
66664

τ−6
τ

3
τ

3
τ

3
τ

τ−3
τ

0

3
τ

0 τ−3
τ

3
77775

• For each q in N
∗:

- Simulate V = v[q] according to p(v|y) based on
Θ[q] = {Σ[q], τ [q], a[q], π

[q]
v , a

[q]
ij } [15].

- Compute Θ[q+1] = {Σ[q+1], τ [q+1], a[q+1], π
[q+1]
v , a

[q+1]
ij }:

To estimate τ [q+1], we compute the mean value of the distance
between the inspiration mid-points on X [q]. a[q+1] converges ac-
cording to the set of parameters param[q] = {Σ[q], τ [q], π

[q]
v , a

[q]
ij }:

a[1] = 0, a[q+1] = 1
2
(1 − |param[q]−param[q−1]|

param[q−1] ) for q > 0.
Note that a remains lower than 1

2
.

π
[q+1]
v (i) = 1

[v
[q]
1 =i]

a
[q+1]
ij = 1

N−1

PN
l=2 1

[x
[q]
l

=j,x
[q]
l−1

=i]

For each λk ∈ Λ, the transition matrix â
[q+1]

ij|λk
is estimated by

computing and normalizing the relation (1).

(σ
[q+1]
i )2 =

PL
l=1 w2

l 1
S

ωi
[q]

card(S
ωi
[q]

)

1 represents the indicator function and S
ωi

[q] the wavelets set as-
sociated with the labels ωi at each iteration q.

Stop criterion: | 1
2
− a| < ε, where ε is defined by user.

• Computation of Baum’s Forward-Backward probabilities for
X (section 2.1) and segmentation result by applying MPM criterion.
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4. UNSUPERVISED RESPIRATORY PHASES DETECTION

We wish to identify respiratory cycles and different phases inside a
respiratory signal. The fig. 2 displays the results of detection for two
real respiratory signals and distinct cycle period in a [250, 312.5] Hz
frequency band. The first signal (fig. 2 (a) & (c)) lasts sixteen sec-
onds and contains two entire cycles (τs = 8s), while the second one
(fig. 2 (b) & (d)) lasts eight seconds and contains about three cycles
(τs = 2.5s). In these signals, the inspiration phases can be well
distinguish from the expiration phases as shown by the observation
function.

The fig. 2 (a) & (b) shows results based on the classical HMC:
the segmented signal seems to be homogeneous and coherent. Nev-
ertheless, misclassifications are observed. For the first patient, this
is due to noisy environment where an unexpected expiration phase
is detected. In the second signal, the miss-classified data are due to
the varying intensity between the expiration phases. This kind of
variability is often encountered in recorded respiratory signal, due to
natural instability of breathing signals. It can also be explained by an
unexpected patient’s behavior during an auscultation. Fig. 2 (c) & (d)
show the results using our constrained TMC model. We observe
an efficient phase detection where the classical HMC segmentation
failed. Moreover, the cycle period has been well estimated in both
cases (8.14s for the first signal and 2.46s for the second signal).

ω2

ω3

ω1

151050

(a)

ω2

ω3

ω1

20 4 6 8

(b)

ω3

ω1

ω2

5 10 150

(c)

ω1

ω2

ω3

86420

(d)

Fig. 2. Detection results (solid) for HMC ((a) & (b)) and modified TMC
((c) & (d)) along with observation functions (dash). ω1, ω2 and ω3 labels
respectively correspond to transition, expiration and inspiration phases.

5. CONCLUSION

This paper deals with a respiratory phase analysis based on auscul-
tation signals. We introduced a new model, which adapts the re-
cent Triplet Markov Chain (TMC) to respiratory sounds. The non-
homogeneity and non-stationarity of the hidden data are governed by
an auxiliary process and constrained by the respiratory cycle struc-
ture. A modified SEM method helps to estimate the homogeneous
states; its novelty lies in the integration, during the estimation pro-
cedure, of the prior knowledge based on the respiratory signal. Our
method seems to behave efficiently in order to detect the different
phases. We believe, its ability to localize patterns in the breathing

cycle is of great interest for pathology diagnosis. Moreover, the
phase detection could be helpful to scale different sounds, identi-
fying these phases with respiratory signal atoms: it leaves the door
open for sound comparison, classification and pattern recognition.
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