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ABSTRACT 
 
A new formulation for nonlinear smoothing is derived using 
forward-backward sigma-point Kalman filtering (SPKF). The 
forward filter uses the standard SPKF. The backward filter requires 
the use of the inverse dynamics of the forward filter. While 
smoothers based on the extended Kalman filter (EKF) simply 
invert the linearized dynamics, with the SPKF the forward 
nonlinear dynamics are never analytically linearized. Thus the 
backward nonlinear dynamics are not well defined. In previous 
work, a sigma-point Kalman smoother (SPKS) was derived by 
learning a nonlinear model of the backward dynamics from 
empirical data. In this paper, we make use of the relationship 
between the SPKF and weighted statistical linear regression 
(WSLR). The resulting pseudo-linearized dynamics obtained by 
WSLR is more accurate in the statistical sense than using a first 
order truncated Taylor series expansion as with the EKF. A new 
backward information filter can then be derived, which is 
combined with the forward SPKF to form the smoothed estimates. 
 

Index Terms—Kalman filter, sigma-point Kalman 
smoother, statistical linearized regression, forward-backward filter.  

 
1. INTRODUCTION 

 
The Kalman filter provides an optimal recursive estimate for the 
state kx of a linear state-space system driven by Gaussian noise 

given all noisy measurements 1 2, ,...,k kZ z z z  up to the current 
time k. In contrast, the Kalman smoother estimates the conditional 
expectation of the state given all past and future measurements 

1 2, ,..., , 1 .k N k NZ z z z  Several common Kalman smoothing 
formulations are given in [2]-[5]. In this article we consider fixed 
interval smoothing where the final time N is fixed. For nonlinear 
state-space models, the extended Kalman filter (EKF) approach 
may be used whereby the nonlinear state-space model is linearized 
around the estimate of the current state using a first order Taylor 
series expansion.  Linear Kalman smoothing equations are then 
applied.  
    The smoothing algorithm presented in this paper employs the 
sigma-point Kalman filter (SPKF). The SPKF, which includes the 
unscented Kalman filter (UKF) [6], central difference Kalman 
filter (CDKF) [7], and their square-root variants [8], has recently 
become a popular better alternative to the EKF. Like the EKF, the 
SPKF approximates the state distribution by a gaussian random 
variable (GRV). However, the probability distribution is 
represented by a set of carefully chosen deterministic sample 
points (known as sigma points). These sigma points are then 
propagated through the true nonlinear system, with the posterior 

mean and covariance calculated using simple weighted averaging. 
This approach captures the posterior mean and covariance 
accurately to the 2nd-order (3rd-order is achieved for symmetric 
distribution) compared to EKF which linearizes the nonlinear 
systems and only achieves 1st-order accuracy.  
    Two SPKF-based smoother variants have appeared in the 
literature. In [1], the sigma-point Kalman smoother (SPKS) uses a 
forward-backward approach. A standard SPKF is run in the 
forward direction using the nonlinear model. A second SPKF is 
then run in the backward direction and the two estimates are 
combined. However, in order to run the backward SPKF, an 
inverse dynamic model of the forward filter is needed, which is 
derived by training a backward nonlinear predictor (e.g., a neural 
network model). As the backward model needs to be fit to the data, 
it is both application-specific and potentially time consuming to 
design. In [9], the unscented Rauch-Tung-Striebel smoother 
(URTSS) is proposed, which uses the joint distribution of the 
current and future state in order to obtain a smoothed estimate of 
the current state. While this avoids the need for inverse dynamics, 
the computational complexity (cube of the state dimension) 
increases significantly due to the doubling of the state dimension. 
    The proposed smoother presented in this paper follows the same 
forward-backward procedure described in [1]. However, instead of 
learning a new backward model from the data, our proposed SPKS 
makes use of the WSLR formulation of the filter. WSLR is a 
linearization technique that takes into account the uncertainty of 
the prior random variable (RV) when linearizing the nonlinear 
model [1]. In this way, WSLR is more accurate in the statistical 
sense than first-order linearization which does factor in the 
“probabilistic spread” at the point of linearization. By representing 
the forward dynamics in terms of WSLR, we are able to derive 
from first principles a backward information filter that does not 
require inverting the nonlinear dynamics. Estimates of the forward 
and backward filter are then optimally combined to generate 
smoothed estimates in the standard manner. To distinguish 
between the algorithms, we refer to the new filter as a forward-
backward statistical linearized sigma-point Kalman smoother 
(FBSL-SPKS). The original smoother presented in [1] is referred 
to as a forward-backward nonlinear sigma-point Kalman smoother 
(FBNL-SPKS). 
 

2. RELATIONSHIP BETWEEN SPKF AND WSLR 
 
Consider a prior RV x that is propagated thorough a nonlinear 
function g(x) to obtain a posterior RV y. Sigma points 

, 0,1 ,2i i M are selected as the prior mean x  plus and minus 
the columns of the square root of the prior covariance xP  

 ,x x= +x x P x P  (1) 
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where M is the RV dimension, and  is a composite scaling 
parameter.  
The weighted statistics of the sigma points capture the mean x  
and prior covariance xP .  
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where iw  is the normalized scalar weight. Each prior sigma point 
is propagated through the nonlinearity to form the posterior sigma 
point set i . 
 ( )     0,1 ,2 .i ig i M  (3) 
The posterior statistics can then be calculated using weighted 
averaging of the posterior sigma points, 
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 An alternative view is to consider the estimates arising from the 
sigma point approach as a weighted statistical linearization of the 
nonlinear dynamics: 
 ( )g + y x Ax b +  (5) 
where  is the linearization error. A and b are calculated to 
minimize the expected mean squared errors (MSE).  
 [ , ] arg min( )TEA b W   (6) 

The true expectation is replaced as a finite sample approximation,  
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where the point-wise linearization error i i iA b . Taking 
partial derivatives with respect to A and b, we can show that, 

 1

ˆ
ˆ T

xy x=

b y Ax

A P P
 (8) 

where the necessary terms are calculated from the posterior sigma 
points. The linearization error  has zero mean and 
covariance ˆ T

y xP P AP A .  
    To form the sigma-point Kalman filter, we consider the 
nonlinear state-space model: 

 1 ,

,
k k k k

k k k k

x f x v

z h x n
 (9) 

where M
kx  is the state, P

kz  is the measurement at time k, 

kv and kn  are the gaussian-distributed process and observation 
noises, f(.) is the dynamic model function and h(.) is the 
observation model function. The process and observation noise has 
zero mean and covariances Qk and Rk respectively. The SPKF is 
then derived by recursively applying the sigma point selection 
scheme to these dynamic equations (see [6], [10] for details). 
    Alternatively, we can form the statistically linearized state-
space: 

 1 ,

,

k f,k k f,k f k f f k

k h,k k h,k k h k

x A x b G v G
z A x b n

 (10)

where f,kA , h,kA , f,kb , h,kb are the statistical linearization parameters 

and ,f k , ,h k are the linearization error with mean zero and 

covariances
,kf

P and ,kh
P . Deriving the Kalman filter using this 

linearized state-space also leads to the SPKF (see again [1] for 
details). However, the advantage of the statistically linearized form 
is that it allows for the formulation of the backward information 
filter necessary for smoothing, as detailed in the next section. 
 

3. FORWARD-BACKWARD STATISTICAL 
LINEARIZED SIGMA-POINT KALMAN 

SMOOTHER (FBSL-SPKS) 
 
3.1 Forward Filter 
 
A standard SPKF is used as the forward filter with the nonlinear 
state-space model shown in (9). The forward filter estimates the 
state kx  at time index k given all the past and present 
measurements. The pseudo code for the SPKF with WSLR is 
shown below: 
  
Initialization: 
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For k = 1… N 
 

1. Calculate sigma-points: 

 a a a a a aˆ ˆ ˆk k k k k k= + (L + ) (L + )x x P x P  (12) 

where a
TT T Tx v n= is the prior sigma point set.  

2. Time-update equations: 
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3. Weighted Statistical linearization of f(.): 
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4. Measurement update equations: 
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5. Weighted Statistical linearization of h(.): 
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Parameters: m ,iw  and c
ijw  are scalar weights as defined in [1]. L 

is the dimension of the augmented state. Here we assumed that the 
length of the observation sequence is N. 
 
3.2 Backward Filter 
 
An information filter is used to estimate the states from the 
backward direction with the statistically linearized state-space 
shown in (10). As the statistically linearized state-space is different 
than the standard linear state-space used by the Kalman filter [3], 
[11], we must derive the time update and measurement update 
equations from first principles.  
 

1. Initialization: 
 0, 0N NS y  (18) 
where the information matrix is denoted as the inverse of the state 

error covariance i.e,. 
1

k kS P  and ˆ ˆk k ky S x  is defined as 

information state.  
 

2. Time update for information matrix: 
From (10), 
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where , ,,kf

T
f k f kEP is the covariance of the linearization 

error, 1 1 1
T

k k k+EP e e is the error covariance of the state 

prediction and T
k k kEQ v v is the process noise covariance. 

Applying the matrix inversion lemma to (19) and simplifying, 
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,Define as the backwardgain matrix,b k K
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Putting (21) into (20) we obtain, 
 , 1 .T T

k f,k b k f k f,k S A I K G S A  (22) 

Note the presence of the correction term
,kf

P in the right hand side 

of (20) and (21). This term does not appear in the standard 
information filter formulation [3], [11]. The more severe the 
nonlinearity is over the uncertainty region of the state, the higher 
will be the linearization error covariance matrix 

,kf
P . A first-

order Taylor series expansion is less accurate because it does not 
consider this error term.   
 

3. Time update for information state: 
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Now putting the value of kS from (22) into (23), we obtain: 

 , 1 1ˆ ˆ .T T
k f,k b k f k+ k f,kIy A K G y S b  (24) 

Note the correction term 1k f,kS b is subtracted out from the previous 
information state. Again, this term is not present in the standard 
information filter. 
 

4. Measurement update: 
By applying (19)-(24): 
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where kz is the measurement at time k. Details of this last 
derivation are omitted due to space limitations. 
 
3.3 Smoothing    
 
The SPKF is run in the forward direction on the interval [0, N] to 
compute the forward estimates fˆ kx . The information filter is then 

run backwards to compute the backward estimates bˆ kx . Note that 
the forward estimates are posterior estimates (after the 
measurement), whereas the backward estimates are prior estimates 
(after the time update). The smoother optimally combines the 
forward and backward estimates and their respective error 
covariances to determine an overall estimate ˆ kx and corresponding 
error covariance. Specifically,  
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These estimates now incorporate all measurement data 0:Nz .   
 

4. EXPERIMENTAL RESULTS 
 
We evaluate the proposed FBSL smoother to estimate an 
underlying clean Mackey-Glass-30 chaotic time series corrupted 
by additive Gaussian white noise (SNR = 3 db). The clean and 
noisy time series are shown in Fig. 1. The clean time series was 
modeled as nonlinear autoregression f using a 6-5-1 (input-hidden-
output nodes) feed forward neural network as in [1]. The 
corresponding state-space equations are shown in (27).  
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Fig. 2 shows a segment of the FBSL-SPKS estimates compared to 
the standard SPKF. Fig. 3 displays the squared error between the 
true and estimated time series. The superior performance of the 
proposed SPKS over the SPKF is clearly visible. Table 1 
summarizes performance of the different filters in terms of mean 
of the MSE and standard deviation of the MSE for a Monte-Carlo 
run of 100 randomly initialized experiments. Large errors in the 
EKF and EKS estimates are due to the inaccurate linearization-
based approach. As seen in Table 1, both sigma-point Kalman 
smoothers perform comparably. Whereas the FBNL-SPKS 
requires a separate learned model of the nonlinear backward 
dynamics, the new FBSL-SPKS formulates the backward 
information filter directly using the WSLR technique during the 
forward pass. 
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                         Fig. 1: Clean and noisy time series data 
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Fig. 2: Estimated time series using SPKF and FBSL-SPKS 
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        Fig. 3: Squared error between true and estimated time series 

Table 1: Mean and standard deviations over 100 Monte-Carlo runs 
Estimator Mean(MSE) Std(MSE) 
EKF 1.20 0.25 
EKS 0.725 0.18 
SPKF 0.236 0.05 
FBNL-SPKS 0.106 0.02 
FBSL-SPKS 0.098 0.02 

 
5. CONCLUSION 

 
A new smoother formulation for nonlinear state-space models has 
been derived. The FBSL-SPKS uses a forward-backward 
approach.  The forward filter is an SPKF, which operates on the 
original nonlinear state-space. The backward filter is an 
information filter, which uses a linear state-space derived using the 
WSLR technique. The estimates of the two filters are then 
optimally combined to generate the smoothed estimate. The 
performance of the FBSL-SPKS has been demonstrated and 
compared with other approaches. It was also shown that the FBSL-
SPKS performs comparably to the original FBNL-SPKS, with the 
advantage of not requiring an extra step to learn the backward 
nonlinear dynamics. Using similar WSLR techniques, we can also 
derive a new Rauch-Tung-Striebel (RTS) type of smoother. This 
RTS smoother differs from the form in [9], and will be detailed in 
a future publication.  
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