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ABSTRACT
A class of nonlinear transformation-based filters (NLTF) for state es-
timation is proposed. The nonlinear transformations that can be used
include first (TT1) and second (TT2) order Taylor expansions, the
unscented transformation (UT), and the Monte Carlo transforma-
tion (MCT) approximation. The unscented Kalman filter (UKF) is by
construction a special case, but also nonstandard implementations
of the Kalman filter (KF) and the extended Kalman filter (EKF) are
included, where there are no explicit Riccati equations.

The theoretical properties of these mappings are important for
the performance of the NLTF. TT2 does by definition take care of
the bias and covariance of the second order term that is neglected in
the TT1 based EKF. The UT computes this bias term accurately, but
the covariance is correct only for scalar state vectors. This result is
demonstrated with a simple example and a general theorem, which
explicitly shows the difference between TT1, TT2, UT, and MCT.

Index Terms— unscented transform, nonlinear transformation,
extended Kalman filtering, nonlinear filtering, Kalman filter

1. INTRODUCTION

The unscented transformation (UT) [1–3] has received considerable
attention during the last decade. Its main idea is to compute approxi-
mations of the first and second moment of a nonlinear transformation
z = g(x). Its main application is in nonlinear filtering to improve the
extended Kalman filter (EKF) [4–6] leading to the unscented Kalman
filter (UKF).

Many successful applications of the UKF have been reported.
One important case occurs in target tracking, where the UT is suc-
cessful in converting range and bearing in radar measurements into
Cartesian coordinates, see Table 2 and Fig. 1. In this case, the UT

provides a good estimate of the first two moments, and the measure-
ment update in UKF shows an obvious improvement over EKF when
the relative range and bearing uncertainty is large.

Four approximative transformations are compared in Tables 1
and 2, and will be discussed in the paper:

TT1: First order Taylor expansion leading to Gauss’ approximation
formula. TT1 applied to nonlinear filtering leads to the stan-
dard EKF, in the sequel called EKF1.

TT2: Second order Taylor expansion, which compensates the mean
and covariance with the quadratic second order term [4, 6, 7].
TT2 applied to nonlinear filtering leads to EKF2 [8].
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UT: The unscented transformation [1], with a standard ‘std’ and a
modified formulation here denoted ‘mod’ with more degrees
of freedom. This leads to UKF.

MCT: The Monte Carlo transformation (MCT) approach, which in
the limit should compute correct moments.

Section 2 explains these approximations in some more detail. A first
contribution is to show that UKF attains its claimed properties only
for mappings g(x) for a scalar x. Generally, the covariance will be
biased compared to TT2.

It is frequently stated in literature that the UT computes correct
first and second order moments when the transformed random vari-
able, x, is Gaussian. The following quote is a typical statement
from [3]:

“These sample points [used in the UT ] completely capture the
true mean and covariance of the GRV [Gaussian random vari-
able], and when propagated through the true nonlinear system,
captures the posterior mean and covariance accurately to the
3rd order (Taylor series expansion) for any non linearity.”

It is easy to show by example that this statement is false. Table 1
provides one revealing example, and it is more generally shown in
Theorem 1.

A general advantage of UKF compared to EKF is that only func-
tion evaluations are needed, therefore Jacobians and Hessians of the
nonlinear functions do not have to be available, or even exist. That is,
general mappings such as smoothed table lookups or function calls
are allowed. As a second, minor, contribution in Section 3, is to point
out that both EKF1 and EKF2 can be implemented with only function
evaluations. The numerical values in Tables 1 and 2 are computed
this way with general-purpose transformation implementations.

A more important third contribution is the introduction of a new
class of nonlinear-transformation-based filters (NLTF) in Section 5,
where TT1, TT2, UT and MCT can be applied independently in the
time and measurement update of the KF.

2. NONLINEAR TRANSFORMATIONS REVISITED

This section details the different transformations considered in this
paper.

36171-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



2.1. Taylor Expansion

Consider a general nonlinear transformation and its second order
Taylor expansion

z = g(x) = g(μx) + g′(μx)(x− μx)

+
ˆ

1
2
(x− μx)T g′′i (ξ)(x− μx)

˜
i| {z }

r
`

x;μx,g′′(ξ)
´ , (1)

where nx is the dimension of the vector x ∈ R
nx , and z ∈ R

nz .
The notation [vi]i is used to denote a vector in which element i is vi.
Analogously, the notation [mij ]ij will be used to denote the matrix
where the (i, j) element is mij .

2.2. Summary of Approximative Transformations

To summarize, the following options are available for the transfor-
mation of x ∼ N `

μx, Px

´
using g. The result is a Gaussian approx-

imation z ∼ N `
μz, Pz

´
.

TT1: First order Taylor approximation:

μz = g(μx) Pz = g′(μx)Px

`
g′(μx)

´T
(2)

TT2: Second order Taylor approximation:

μz = g(μx) + 1
2
[tr(g′′i (μx)Px)]i (3a)

Pz = g′(μx)Px

`
g′(μx)

´T
+ 1

2

h
tr

`
Pxg′′i (μx)Pxg′′j (μx)

´i
ij

(3b)

UT: Unscented transform approximation: First define, ui and σi

from the singular value decomposition (SVD) of the covariance ma-
trix Px,

Px = UΣUT =

nxX
i=1

σ2
i uiu

T
i ,

and then let

x(0) = μx, x(±i) = μx ±
√

nx + λσiui,

ω(0) =
λ

nx + λ
, ω(±i) =

1

2(nx + λ)
,

where i = 1, . . . , nx. Let z(i) = g(x(i)), and apply

μz =

nxX
i=−nx

ω(i)z(i), (5a)

Pz =

nxX
i=−nx

ω(i)(z(i) − μz)(z
(i) − μz)

T

+ (1− α2 + β)(z(0) − μz)(z
(0) − μz)

T , (5b)

where ω(0)+(1−α2+β) is often denoted ω
(0)
c and used to make the

notation more compact for the covariance matrix expression. This is
the ‘mod’ version of the UT, to get the ‘std’ version remove the last

term in (5b), i.e., ω(0) = ω
(0)
c .

MCT: Monte Carlo Transformation:

x(i) ∼ N `
μx, Px

´
, i = 1, . . . , N,

z(i) = g(x(i)),

μz =
1

N

NX
i=1

z(i), (6a)

Pz =
1

N − 1

NX
i=1

`
z(i) − μz

´`
z(i) − μz

´T
. (6b)

The design parameters of UT have the same notation as in UKF

literature (e.g., [3]):

• λ is defined by λ = α2(nx + κ)− nx.

• α controls the spread of the sigma points and is suggested to
be approximately 10−3.

• β compensates for the distribution, and should be chosen as
β = 2 when x is Gaussian.

• κ is usually chosen to zero.

• ω(0) = 1− nx
3

for UT (std) when x is Gaussian.

Note that nx + λ = α2nx when κ = 0, and that for nx + λ → 0+

the central weight ω(0) → −∞. Furthermore,
P

i ω(i) = 1.

In summary, TT1 is a computationally cheap approximation,
TT2 recovers the first two moments if the gradient and Hessian are
available (for Gaussian distributions and quadratic functions TT2 is
completely correct, otherwise often a good approximation), the MCT

approach is asymptotically correct, and that the UT is a fairly good
compromise between TT2 and MCT, that improves computational
complexity to MCT and the need for prior knowledge to TT2.

2.3. Nonlinear Filtering

Basically, the nonlinear filters in literature are based on the follow-
ing:

• EKF in its classical formulation is based on the Kalman filter
recursions using the constant and linear terms in (1). This is
the EKF1 algorithm. EKF1 works well as long as the rest term
is small. Small here relates both to the state estimation error
and the degree of nonlinearity of g. As a rule of thumb, the
rest term is negligible if either

– the model is almost linear,

– the signal-to-noise ratio (SNR) is high, in which case
the estimation error can be considered sufficiently
small.

• The EKF1 is often still useful if dithering is used to mitigate
the effect of linearization errors. That is, the noise covari-
ances in the state-space model can be increased by the MSE

contribution of the mean (bias) and covariance of the second
order Taylor term. This is part of the inevitable tuning process
of Kalman filters.

• The second order compensated EKF, referred to as EKF2, ap-
proximates the rest term r(x; μx, g′′(ξ)) with r

`
x; μx, g′′(μx)

´
,

and compensates for the mean and variance of this term. This
works well if g′′ varies little over the principal support of x.

• UKF estimates the first moments of the nonlinear transforma-
tion in (1), without explicitly computing, or even assuming
existence, of any derivatives of g.

There are several links and interpretations connecting UKF and EKF

as will be pointed out in Section 4.
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Table 1. Nonlinear approximations of xT x for x ∼ N (0n, In×n).
The theoretical distribution is χ2(n) with mean n and variance 2n.
The mean and variance are below summarized as a Gaussian distri-
bution. 10000 Monte Carlo simulations. ω(0) = 1− n

3
for UT (std),

and α = 10−3, β = 2, and κ = 0 for UT (mod).

n TT1 TT2 UT (std) UT (mod) MCT

1 N (0, 0) N (1, 2) N (1, 2) N (1, 2) N (1.0, 2.2)

2 N (0, 0) N (2, 4) N (2, 2) N (2, 8) N (2.0, 4.1)

3 N (0, 0) N (3, 6) N (3, 0) N (3, 18) N (3.0, 6.3)

4 N (0, 0) N (4, 8) N (4,−4) N (4, 32) N (4.0, 8.4)

5 N (0, 0) N (5, 10) N (5,−10) N (5, 50) N (5.18, 10.4)

n N (0, 0) N (n, 2n) N (n, (3− n)n) N (n, 2n2) —

3. NUMERIC TAYLOR TRANSFORMATIONS

It is a trivial fact that the Jacobian and Hessian in TT1 and TT2,
respectively, can both be computed using numerical methods. Nev-
ertheless, this fact is seldom explicitly stated in literature. It is worth
stressing that both g′i(x) and g′′i (x) are computed using numerical
methods in Tables 1 and 2. That is, only function evaluations of the
nonlinear function g(x) are assumed to be available.

4. ANALYSIS OF THE UNSCENTED TRANSFORM

In this section the UT will be analyzed and expressions for the result-
ing mean and covariance are given and interpreted in the limit as the
sigma points approach the center point. The results are exemplified
numerically.

4.1. Main Result

Theorem 1 (First and second moments of UT). Consider a nonlin-
ear mapping of the random stochastic variable x, with mean μx and
covariance Px, to z, g : R

nx �→ R
nz . The UT yields mean μz and

covariance Pz asymptotically as the sigma points in UT tend to the
mean, i.e., λ → −n+

x , given by

μUT

z = g(μx) + 1
2

ˆ
tr(g′′i Px)

˜
i
, (7a)

P UT

z = g′(μx)Px

`
g′(μx)

´T

+ (β−α2)
4

ˆ
tr

`
Pxg′′i (μx)

´
tr

`
Pxg′′j (μx)

´˜
ij

(7b)

Furthermore, μUT = μTT2 for all nx, α, β, and κ, whereas P TT2
z =

P UT
z is only guaranteed to be true if β − α2 = 2 and nx = 1.

In general, the covariances of TT2 and UT are different. Note
that the trace in (3b) turns into a product of two traces in (7b), and
generally tr(AB) �= tr(A) tr(B) unless A or B is scalar. The rea-
son for the difference is that the UT cannot express the mixed sec-
ond order derivatives needed for the TT2 compensation term without
increasing the number of sigma points. The result of this approxi-
mation depends on the transformation and must be analyzed for the
case at hand.

Proof. A proof of this theorem can be found in the technical report
[9].

4.2. Numerical Illustrations

The first illustration of the transformation is to approximate the dis-
tribution of xT x when x is a white Gaussian stochastic vector. The
results are given in Table 1. In this case, Px = I , g′(0) = 0, and
g′′(0) = I , and the asymptotic UT result (given by Theorem 1) is

mz = n Pz = (β − α2)n2.

Note especially how poor the TT1 and UT (std) approximations are,
and that neither of the two UT versions gives the correct approxima-
tion for this quadratic transformation.

The second illustration is the transformation of range, x1, and
bearing, x2, to Cartesian coordinates, z1, z2. That is, z1 = x1 cos x2

and z2 = x1 sin x2. Numerical results for different bearings are
presented in Table 2.

For this case (numeric values are for x1 = 20, x2 = π
4

),

g′ =
„

cos x2 −x1 sin x2

sin x2 x1 cos x2

«
=

√
2

2

„
1 −20
1 20

«

g′′1 =

„
0 − sin x2

− sin x2 x1 cos x2

«
=

√
2

2

„
0 −1
−1 −20

«

g′′2 =

„
0 cos x2

cos x2 −x1 sin x2

«
=

√
2

2

„
0 1
1 −20

«
.

It follows from (3) and Theorem 1 that

μUT

z =
`

13.4
13.4

´
= μTT2

z

P UT

z = β−α2

4

`
43.0 −37.0
−37.0 43.0

´ �= 1
2

`
43.1 −37.1
−37.1 43.1

´
= P TT2

z ,

for the third row in Table 2. The same result is illustrated in Figure 1.
Note again how TT1 stands out with poor approximations.

Fig. 1. Distributions on the last row in Table 2. The covariance
ellipses for TT2, UT (std and mod), and MCT practically coincide,
where as the light-gray (green) TT1 ellipse is clearly different.

5. NONLINEAR-TRANSFORMATION-BASED FILTERS

Consider the nonlinear state space model

xk+1 = f(xk, uk, wk), (8a)

yk = h(xk, uk, ek), (8b)

where xk is the state vector, uk known input, wk process noise, yk

measurements, and ek the measurement noise. The Bayesian non-
linear filtering problem is to compute, or approximate, the posterior
distribution p(xk|Yk), where Yk = {yi}k

i=1. A general algorithm
that includes EKF and UKF as special cases is outlined in this section.
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Table 2. Nonlinear approximations of the radar observations to Cartesian position. The mean and variance are below summarized as a
Gaussian distribution. 10000 Monte Carlo simulations. ω(0) = 1

3
for UT (std), and α = 10−3, β = 2, and κ = 0 for UT (mod).

X TT1 TT2 UT (std) UT (mod) MCT

N
“
( 20

0 ), ( 1 0
0 0.1 )

”
N`

( 20
0.0 ), ( 1.0 0.0

0.0 40.0 )
”

N
“
( 19.0
−0.0 ), ( 3.0 0.0

0.0 40.1 )
”

N
“
( 19.0

0.0 ), ( 2.9 0.0
0.0 36.2 )

”
N

“
( 19.0

0.0 ), ( 3.0 0.0
0.0 40.0 )

”
N

“
( 19.0
−0.1 ), ( 2.9 0.3

0.3 36.6 )
”

N
“
( 20

π/6 ), ( 1 0
0 0.1 )

”
N

“
( 17.3
10.0 ), ( 10.7 −16.9

−16.9 30.3 )
”
N

“
( 16.5

9.5 ), ( 12.3 −16.1
−16.1 30.8 )

”
N

“
( 16.5

9.5 ), ( 11.2 −14.4
−14.4 27.8 )

”
N

“
( 16.5

9.5 ), ( 12.3 −16.0
−16.0 30.7 )

”
N

“
( 16.3

9.8 ), ( 12.2 −15.4
−15.4 27.9 )

”

N
“
( 20

π/4 ), ( 1 0
0 0.1 )

”
N

“
( 14.1
14.1 ), ( 20.5 −19.5

−19.5 20.5 )
”
N

“
( 13.4
13.4 ), ( 21.5 −18.5

−18.5 21.6 )
”
N

“
( 13.5
13.5 ), ( 19.5 −16.6

−16.6 19.5 )
”
N

“
( 13.4
13.4 ), ( 21.5 −18.5

−18.5 21.5 )
”
N

“
( 13.3
13.6 ), ( 20.3 −17.1

−17.1 20.0 )
”

5.1. Algorithm

The class of nonlinear transformation-based filters (NLTF) discussed
here is based on a general algorithm consisting of a time update„

xk

vk

«
∼ N

„„
x̂k|k
0nv,1

«
,

„
Pk|k 0
0 Q

««
(9a)

xk+1 = f(xk, uk, vk)
approx.∼ N `

x̂k+1|k, Pk+1|k
´
, (9b)

and a measurement update„
xk

ek

«
∼ N

„„
x̂k|k−1

0ne,1

«
,

„
Pk|k−1 0

0 R

««
(9c)

„
xk

yk

«
=

„
xk

h(xk, uk, ek)

«
approx.∼ N

„„
x̂k|k−1

ŷk|k−1

«
, P

(x
y)

k|k−1

«
. (9d)

To complete the measurement update, the Kalman filter gain Kk and
measurement update can be computed as

Kk = P xy
k|k−1(P

yy
k|k−1)

−1, (9e)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1), (9f)

Pk|k = Pk|k−1 −KkP yy
k|k−1K

T
k , (9g)

where the mean and covariance of the joint distribution of (xT
k , yT

k )T

is given by a block partitioning of P (x
y).

That is, the posterior distribution p(xk|Yk) is at each stage ap-
proximated with a Gaussian distribution. The two approximations
above can be computed with TT1, TT2, UT, or MCT, respectively.
This yields in total 16 different versions of UKF/EKF.

5.2. Discussion

Both the computational complexity and accuracy of the transforma-
tions increase in the same way for TT1, UT, TT2 and MC. As a user
guideline, the choice of transform in the time and measurement up-
date, respectively, of the NLTF is a compromise between accuracy
and complexity, and it basically only depends on the degree of non-
linearity in the dynamics f and measurement relation h . We point
out the following properties of the class of NLTF in (9):

• UKF is obtained using the UT in both time and measurement
updates.

• A Riccati-free implementation of EKF1 is obtained using TT1
in both time and measurement updates. The algebraic equal-
ity of the EKF1 on standard form, using the Kalman filter Ric-
cati equation for the covariance, can be shown using the (9b),
(9d), (9e), and (9g), which implicitly implements the Riccati
equation.

• A Riccati-free implementation of the standard KF is obtained
in case the model (8) is linear. Again, the Riccati equation is
implicitly updated in (9b), (9d), (9e), and (9g).

• If either the dynamics in (8a) or the measurement relation in
(8b) is linear, then the TT1 update can be used in the cor-
responding update without approximation. This simple fact
appears not to be mentioned in the UKF literature.

• Another fact not explicitly mentioned in literature is the pos-
sible inclusion of a Monte Carlo update. For very nonlinear
mappings, this might be the most feasible alternative.

6. CONCLUSIONS

The unscented transformation (UT) has been analyzed in comparison
with the comparable alternative based on a first (TT1) and second
(TT2) order Taylor expansions. Both UT and TT2 aim at approxi-
mating the mean and covariance of a nonlinear mapping g(x) of a
stochastic variable x with second order accuracy. It was first shown
by a counter-example that UT fails with its mission in a simple ex-
ample, and then a general result was stated that the mean term of UT

approaches the TT2 mean, but the covariances are only the same for
a scalar x in general. A class of nonlinear-transformation-based fil-
ters (NLTF) was proposed for state estimation in nonlinear systems.
This includes the unscented Kalman filter (UKF) as a special case,
but also Riccati-free versions of the standard Kalman filter (KF) and
extended Kalman filter (EKF). It also allows arbitrary combinations
of UT, TT1, TT2 and a Monte Carlo transformation (MCT) step in
the measurement and time updates, respectively. All these reported
algorithms are available in version 1.1 of the Signals and Systems
Lab of Comsol script (http://www.comsol.se).
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