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ABSTRACT
The major drawback for using adaptive Volterra filters is the high 
computational complexity requirement. In this context, a large 
number of reduced complexity implementations have been 
proposed to increase the applicability of such filters. Contributing 
in this sense, this paper presents a fully LMS adaptive approach for 
implementing interpolated Volterra filters with a very good 
performance characteristic. The adaptive interpolated Volterra 
structure is a simplified version of the conventional one which 
adapts both the interpolator and the sparse filter. Numerical 
simulations illustrate the usefulness of the proposed approach. 

Index Terms—Adaptive filters, adaptive signal processing, 
interpolation, least mean square methods, nonlinear filters. 

1. INTRODUCTION 
Adaptive Volterra filters have become an interesting option for 
several nonlinear adaptive applications, such as active control of 
nonlinear noise processes [1], acoustic echo canceling, and 
reduction of distortions on loudspeaker systems, among others [2]. 
The increasing processing capacity of the modern digital signal 
processors (DSPs) has contributed widely in this context, 
permitting to partially overcome the main difficult, for 
implementing digital Volterra filters, that is, its high computational 
complexity. In addition, a significant research effort has been 
carried out aiming to obtain Volterra filter structures with a lower 
computational burden. Most of such approaches are based on 
simplified, sparse, and truncated structures [3], [4], or even on the 
frequency domain [5]. The interpolated structures constitute a class 
of reduced complexity Volterra implementations [6], which have 
been originally considered to implement linear FIR filters [7]. The 
idea then is to use a filter cascade composed of a sparse filter, with 
a reduced coefficient number, and an interpolator filter, whose 
purpose is to recreate the missing coefficients in the sparse filter 
[6], [7]. In the Volterra case, the interpolation is performed with an 
input linear FIR interpolator filter followed by an output sparse 
Volterra filter [6]. In the adaptive version, only the coefficients of 
the sparse filter are adapted; the interpolator coefficients are 
maintained fixed [6]. However, the use of a fixed interpolator often 
leads to a poor performance. Then, aiming to overcome such a 
drawback, this paper proposes a fully adaptive interpolated 
Volterra structure using the least-mean-square (LMS) algorithm to 
adapt the filters’ coefficients. 

This paper is organized as follows. Section 2 presents the 
Volterra filter and its main characteristics. In Section 3, the 
interpolated Volterra filter is discussed. In Section 4, the fully 
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LMS adaptive interpolated Volterra structure is derived. Section 5 
shows some results of numerical simulations. Finally, Section 6 
presents the conclusions of this research work. 

2. VOLTERRA FILTER 
The input-output relationship of a causal and discrete Volterra 
filter is given by [2] 
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where ( )x n  is the input signal, ( )y n  is the output signal, 

1( , , )p ph m m  denotes the pth-order coefficient, N  is the memory 
size, and P  is the filter order. As described in [1], (1) can be 
rewritten as 
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Note, from (1) and (2), that the Volterra filter can be seen as a 
parallel block structure composed of a first-order (linear block) 1h
and nonlinear blocks with orders ranging from 2  to P . The 
input-output relationship for each block, given by (3), can also be 
described in a vector representation [2]. Thus, 

T( ) ( )p p py n nx h  (4) 

where ph  denotes the pth-order coefficient vector and ( )p nx  is 
the pth-order input vector. The latter is obtained as follows [2]: 

1 1( ) ( ) ( )p pn n nx x x  (5) 
with

T
1( ) [ ( )  ( 1)    ( 1)]n x n x n x n Nx  (6) 

where  denotes the Kronecker product. 
By defining the Volterra filter input vector as 

T T T T
V 1 2( ) [ ( ), ( ), , ( )]Pn n n nx x x x  (7) 

and the Volterra coefficient vector by 
T T T T

V 1 2[ , , , ]Ph h h h  (8) 
expression (1) can be rewritten as 

T
V V( ) ( ) .y n nx h  (9) 
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The number of coefficients for each pth-order block is given by 
 ( ) .p

pD N N  (10) 

Therefore, the number of coefficients of the Volterra filter is 
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As described in [1], the causal Volterra filter can be implemented 
by taking into account the symmetry of the kernels. As a 
consequence, the number of coefficients for each block can then be 
reduced to 

( 1)!( )
( 1)! !p
N pD N
N p

 (12) 

and the total number of coefficients to 
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From (10) and (11), or even from (12) and (13), one can easily 
verify that the computational complexity required to implement a 
Volterra filter is very high. Furthermore, the number of 
coefficients grows exponentially with memory size. Thus, 
depending on both the required memory size and the order, the 
implementation of the Volterra filter may even be unfeasible. 

3. INTERPOLATED VOLTERRA STRUCTURE 
The block diagram of an interpolated Volterra structure is 
presented in Fig. 1. In this figure, ( )x n  and ˆ( )y n  represent the 
input and output signals, respectively, while i  represents an 
interpolator filter with memory size M  and coefficient vector 

T
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and its block structure is highlighted by the dashed box. Each 
pth-order sparse block is denoted by sph  with output signal given 
by ˆ ( )py n . Vectors ( )p nx  represent the pth-order interpolated 
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interpolated input signal ( ).x n
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Fig. 1. Block diagram of an interpolated Volterra structure. 
The sparse first-order coefficient vector of the interpolated 
Volterra filter is obtained by setting to zero 1L  of each L
coefficients of the conventional Volterra first-order block [6], [7], 
which by considering T

1 1 1 1[ (0)  (1)    ( )]h h h Nh  results in 
T

1s 1 1 1 s{ (0) 0  ( ) 0  [( 1) ] 0  0} .h h L h N Lh  (14) 
Thus, the number of nonzero coefficients in (14) is 

s ( 1) 1N N L  (15) 

where  represents the truncation operation. 
The remaining pth-order sparse coefficient vectors are obtained as 
described in [6]. The first-order input vector is given by 

T
1( ) [ ( )  ( 1)  ( 2)    ( 1)] .n x n x n x n x n Nx  (16) 

By considering that 
T
M( ) ( )x n nx i  (17) 

with 
T

M ( ) ( ) ( 1) ( 2) ( 1)n x n x n x n x n Mx  (18) 
expression (16) is rewritten as 

T
1 1( ) ( )n nx X i  (19) 

for 
1 M M M( ) [ ( ) ( 1) ( 1)]n n n n NX x x x . (20) 

Thus, the output of the sparse first-order block is 
T T

1 1 1s 1 1sˆ ( ) ( ) ( ) .y n n nx h i X h  (21) 
The input vectors for the other blocks are obtained recursively by 

1 1( ) ( ) ( )p pn n nx x x . (22) 
By considering (17), (22), and the Kronecker mixed-product rule 
[2], the output of the sparse second-order block can be written as 

T T T
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with 2i i i  and 2 1 1( ) ( ) ( ).n n nX X X
Now generalizing, the output of the pth-order sparse block is 

T
sˆ ( ) ( )p p p py n ni X h  (24) 

with
1p pi i i  (25) 

and
1 1( ) ( ) ( ).p pn n nX X X  (26) 

Then, considering 
T T T T

V 1 2 2( ) [ ( ) ( ) ( )]P Pn n n nx i X i X i X  (27) 
and

T T T T
Vs 1s 2s s[ ]Ph h h h  (28) 

the output of the interpolated Volterra filter is given by 

T
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The interpolated Volterra filter can also be implemented by 
considering sparsity and interpolation only in the nonlinear blocks 
[6]. Such an approach is known as the partially interpolated 
Volterra (PIV) structure, presenting almost the same number of 
coefficients of the fully interpolated Volterra (FIV) approach, since 
the nonlinear blocks are the most coefficient demanding ones [6]. 

4. FULLY LMS ADAPTIVE INTERPOLATED 
VOLTERRA STRUCTURE 

The implementations of adaptive interpolated Volterra structures 
[6] [adaptive fully interpolated Volterra (AFIV) structure and 
adaptive partially interpolated Volterra (APIV) structure] are based 
on adapting only the sparse filter [6] in the structure. The 
advantage of such an approach is that all standard adaptive 
algorithms can be considered. However, the use of a fixed input 
interpolator results in a poor performance. Then, to make use of an 
adaptive interpolator may improve such a situation. In this section, 
the expressions for a fully LMS adaptive interpolated Volterra 
structure are derived. Starting from a similar approach to [8], the 
error signal is given by 

T
V Vs

1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

P

p
p

e n d n y n d n y n d n nx h  (30) 

where ( )d n  represents the signal to be estimated by the adaptive 
filter. The cost function for deriving the LMS algorithm is the 
instantaneous estimate of the mean-square error (MSE), given by 
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2
MSE

ˆ ( ) ( )J n e n . (31) 
The coefficients of the interpolated structure are updated 
proportionally by using the gradient of the cost function (31) [8], 
[9]. Thus, for the sparse Volterra filter the following update 
expression is obtained: 

Vs

2
Vs Vs V( 1) ( ) ( )n n e nhh h  (32) 

where V  denotes the step-size parameter and 
Vs

2( )e nh  is the 

gradient of the cost function with respect to Vs ( )nh . By using the 
derivative chain rule, the gradient vector is written as 
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2 2
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Thus from (30), the right-hand side (r.h.s.) terms of (33) are 
2( ) 2 ( )
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and
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Therefore, the LMS update equation for the sparse filter is given 
by 

Vs Vs V V( 1) ( ) 2 ( ) ( )n n e n nh h x . (36) 

Note that (36) is similar to the update expression of the sparse filter 
of the AFIV and APIV structures [6]. When a fixed interpolator is 
used, many of the elements of V ( )nx  can be reused from the 
previous iteration. This condition is not possible in the fully 
adaptive approach since the interpolator filter is time varying, 
increasing thus the computational complexity of the structure. A 
solution to this problem is to assume that the interpolator filter has 
a slow adaptation rate and therefore V ( )nx  can be approximately 
obtained in a similar way as the fixed interpolator case. 

The updating process for the interpolator filter is given by 
2

i( 1) ( ) ( )n n e nii i  (37) 

where i  is the step-size parameter. Then, from (30) and 
considering the derivative chain rule, we have 

2 2
2 ( ) ( ) ( )( ) .

( ) ( ) ( )
e n e n e ne n

n e n ni i i
 (38) 

The first r.h.s. term of (38) results in (34), while the second one is 
given by 
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Then, from (21) and considering the vector differentiation rules, 
described in [10], we get 

T
1

1 1s 1 1s
ˆ ( ) ( ) ( ) ( ) ( ) ( ).
( ) ( )

y n n n n n n
n n

i X h X h
i i

 (40) 

From (24), (25) and [10], we can write 
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Thus, by considering (26), (42), and the Kronecker mixed-product 
rule [2], (41) can be rewritten as 
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From (43), the gradient of the second-order block output signal 
with respect to ( )ni  is 

T T2
1 1 1 1 2s

ˆ ( ) [ ( ) ( ) ( ) ( )] ( ).
( )

y n n n n n n
n

X x x X h
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Due to the symmetric characteristic of 2sh  [ 2s 2s( , ) ( , ),h j k h k j

k  and j ], one verifies that T T
1 1 2s 1[ ( ) ( )] ( ) [ ( )n n n nX x h x

1 2s( )] ( )n nX h  and that also (44) can be rewritten as 
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The symmetric characteristic is also observed in the other 
nonlinear blocks, resulting in similar expressions. Thus, the 
generalized expression for the gradient of the output of a pth-order 
block with respect to ( )ni  is given by 

T
1 1 s

ˆ ( )
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Finally, the update expression for the interpolator coefficients is 

T
i 1 1 s

1
( 1) ( ) 2 ( ) [ ( ) ( )] ( ).

P

p p
p

n n e n p n n ni i X x h  (47) 

Since the interpolator is time varying, the element T
1( )p nx  in (47) 

should be entirely determined at each iteration. However, due to 
complexity questions, the same approximation adopted for 
evaluating V ( )nx  in (36) is used here. 

Fully adaptive interpolated Volterra structures can be 
implemented either by considering a fully interpolated Volterra 
(FIV) structure or a partially interpolated Volterra (PIV) one. The 
differences in the adaptive process between the fully adaptive FIV 
(FAFIV) and fully adaptive PIV (FAPIV) structures are very small 
and the update expressions are easily obtained from (36) and (47). 

Regarding the computational burden, Fig. 2 shows the number 
of operations per sample as a function of the memory size for 
implementing a conventional Volterra filter, the AFIV and FAFIV 
structures. From this figure, it is evident that the proposed 
approach provides considerable computational savings when 
compared with the conventional Volterra implementation. 
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Fig. 2. Computational burden for a second-order LMS Volterra 
implementation. (Solid line) conventional adaptive Volterra filter. 
(Dashed line) AFIV structure. (Dotted line) FAFIV approach. 

5. SIMULATION RESULTS 
In this section, some simulation results are shown, illustrating the 
performance of the fully adaptive interpolated structure in 
comparison with the standard adaptive interpolated approaches. 
The presented examples consider a system identification problem 
[9]. The performance of the structures is assessed in terms of the 
MSE obtained from Monte Carlo simulations (average of 100 
runs). The simulated structures are second-order AFIV and FAFIV 
ones. The interpolation factor is 2L  and the coefficients of the 
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fixed interpolator used by the AFIV structure is given by 
T[0.5 1 0.5]i . In the case of the FAFIV structure, the 

interpolator filter is initialized with T[0.5 1 0.5]i . The input 

signal is a white Gaussian with variance 2 1x , and the additive 

noise added to ( )d n  is a white Gaussian with variance 2 410 .z

Example 1: In this example, the memory size of the plant as well 
as length sparse filters are equal to 11 ( 11)N . The step-size 
parameter is 

1max / 2  for the AFIV structure, and 

2i V max / 2  for the FAFIV structure (
1max  and 

2max  are 
the maximum step-size values, obtained experimentally). The MSE 
results are shown in Fig. 3, from which one observes a better 
performance of the FAFIV structure as compared with the AFIV 
one. Fig. 4 shows the first-order filter coefficients of the plant and 
the steady-state equivalent ones for each adaptive structure. 
Figs. 5 and 6 show the second-order kernels, illustrating the 
surface plots. In this case, one observes the existing match between 
the plant and the estimated kernels, which is much better for the 
FAFIV structure than for the AFIV one. 
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Fig. 3. MSE curves for Example 1. 
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Fig. 4. Coefficient curves for the first-order block from Example 1. 
(Solid line) plant. (Dashed line) AFIV structure. (Dotted line) 
FAFIV structure. 
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Fig. 5. Superposition of second-order coefficient surfaces for 
Example 1. (Solid surface) plant. (Wireframe surface) AFIV 
structure. 
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Fig. 6. Superposition of second-order coefficient surfaces for 
Example 1. (Solid surface) plant. (Wireframe surface) FAFIV 
structure. 

Example 2: In this example, the used plant is the same given in 
[11, Example 2]. The memory sizes and step-size values are the 
same as in Example 1. The MSE curves are shown in Fig. 7. Now, 
one notices that the performance difference between the AFIV and 
the FAFIV structures is smaller than in the previous example. This 
is due to the fact that the fixed interpolator of the AFIV structure is 
in a better agreement with the characteristics of the plant used in 
this example, resulting in an improved performance. However, 
even in this case, a slightly better performance of the FAFIV 
structure is still verified, thus confirming the effectiveness of the 
proposed approach. 
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Fig. 7. MSE curves for Example 2. 

6. CONCLUSIONS 
This paper presents the derivation of the LMS algorithm for a fully 
adaptive interpolated Volterra structure. The proposed approach 
allows improving the performance of standard adaptive 
interpolated Volterra structures, providing computational savings 
in comparison with the standard adaptive Volterra filter. The 
presented simulation results verify the effectiveness of the 
proposed algorithm. 
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