
A FULLY LMS ADAPTIVE INTERPOLATED VOLTERRA STRUCTURE

Eduardo L. O. Batista, Orlando J. Tobias, and Rui Seara

LINSE – Circuits and Signal Processing Laboratory
Department of Electrical Engineering
Federal University of Santa Catarina

88040-900 – Florianópolis - SC – Brazil
E-mails: {dudu, orlando, seara}@linse.ufsc.br

ABSTRACT
The major drawback for using adaptive Volterra filters is the high
computational complexity requirement. In this context, a large
number of reduced complexity implementations have been
proposed to increase the applicability of such filters. Contributing
in this sense, this paper presents a fully LMS adaptive approach for
implementing interpolated Volterra filters with a very good
performance characteristic. The adaptive interpolated Volterra
structure is a simplified version of the conventional one which
adapts both the interpolator and the sparse filter. Numerical
simulations illustrate the usefulness of the proposed approach.

Index Terms—Adaptive filters, adaptive signal processing,
interpolation, least mean square methods, nonlinear filters.

1. INTRODUCTION
Adaptive Volterra filters have become an interesting option for
several nonlinear adaptive applications, such as active control of
nonlinear noise processes [1], acoustic echo canceling, and
reduction of distortions on loudspeaker systems, among others [2].
The increasing processing capacity of the modern digital signal
processors (DSPs) has contributed widely in this context,
permitting to partially overcome the main difficult, for
implementing digital Volterra filters, that is, its high computational
complexity. In addition, a significant research effort has been
carried out aiming to obtain Volterra filter structures with a lower
computational burden. Most of such approaches are based on
simplified, sparse, and truncated structures [3], [4], or even on the
frequency domain [5]. The interpolated structures constitute a class
of reduced complexity Volterra implementations [6], which have
been originally considered to implement linear FIR filters [7]. The
idea then is to use a filter cascade composed of a sparse filter, with
a reduced coefficient number, and an interpolator filter, whose
purpose is to recreate the missing coefficients in the sparse filter
[6], [7]. In the Volterra case, the interpolation is performed with an
input linear FIR interpolator filter followed by an output sparse
Volterra filter [6]. In the adaptive version, only the coefficients of
the sparse filter are adapted; the interpolator coefficients are
maintained fixed [6]. However, the use of a fixed interpolator often
leads to a poor performance. Then, aiming to overcome such a
drawback, this paper proposes a fully adaptive interpolated
Volterra structure using the least-mean-square (LMS) algorithm to
adapt the filters’ coefficients.

This paper is organized as follows. Section 2 presents the
Volterra filter and its main characteristics. In Section 3, the
interpolated Volterra filter is discussed. In Section 4, the fully

This work was supported in part by the Brazilian National Research
Council for Scientific and Technological Development (CNPq).

LMS adaptive interpolated Volterra structure is derived. Section 5
shows some results of numerical simulations. Finally, Section 6
presents the conclusions of this research work.

2. VOLTERRA FILTER
The input-output relationship of a causal and discrete Volterra
filter is given by [2]

1

1 2

1

1

1 1 1
0

1 1

2 1 2 1 2
0 0
1 1

1 1
0 0

() () ()

 (,) () ()

(, ,) () ()
P

N

m
N N

m m
N N

P P P
m m

y n h m x n m

h m m x n m x n m

h m m x n m x n m

 (1)

where ()x n is the input signal, ()y n is the output signal,

1(, ,)p ph m m denotes the pth-order coefficient, N is the memory
size, and P is the filter order. As described in [1], (1) can be
rewritten as

1
() ()

P

p
p

y n y n (2)

with

1 2

1 1 1

1 2
0 0 0 1

() (, , ,) ()
p

pN N N

p p p k
m m m k

y n h m m m x n m . (3)

Note, from (1) and (2), that the Volterra filter can be seen as a
parallel block structure composed of a first-order (linear block) 1h
and nonlinear blocks with orders ranging from 2 to P . The
input-output relationship for each block, given by (3), can also be
described in a vector representation [2]. Thus,

T() ()p p py n nx h (4)

where ph denotes the pth-order coefficient vector and ()p nx is
the pth-order input vector. The latter is obtained as follows [2]:

1 1() () ()p pn n nx x x (5)
with

T
1() [() (1) (1)]n x n x n x n Nx (6)

where denotes the Kronecker product.
By defining the Volterra filter input vector as

T T T T
V 1 2() [(), (), , ()]Pn n n nx x x x (7)

and the Volterra coefficient vector by
T T T T

V 1 2[, , ,]Ph h h h (8)
expression (1) can be rewritten as

T
V V() () .y n nx h (9)

36131-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

The number of coefficients for each pth-order block is given by
 () .p

pD N N (10)

Therefore, the number of coefficients of the Volterra filter is

V
0

(,) .
P

k

k
D N P N (11)

As described in [1], the causal Volterra filter can be implemented
by taking into account the symmetry of the kernels. As a
consequence, the number of coefficients for each block can then be
reduced to

(1)!()
(1)! !p
N pD N
N p

 (12)

and the total number of coefficients to

V
()!(,) 1.

! !
N PD N P
N P

 (13)

From (10) and (11), or even from (12) and (13), one can easily
verify that the computational complexity required to implement a
Volterra filter is very high. Furthermore, the number of
coefficients grows exponentially with memory size. Thus,
depending on both the required memory size and the order, the
implementation of the Volterra filter may even be unfeasible.

3. INTERPOLATED VOLTERRA STRUCTURE
The block diagram of an interpolated Volterra structure is
presented in Fig. 1. In this figure, ()x n and ˆ()y n represent the
input and output signals, respectively, while i represents an
interpolator filter with memory size M and coefficient vector

T
0 1 1[] .Mi i ii The sparse Volterra filter is denoted by Vsh

and its block structure is highlighted by the dashed box. Each
pth-order sparse block is denoted by sph with output signal given
by ˆ ()py n . Vectors ()p nx represent the pth-order interpolated
input vectors, obtained similar to (5), but now considering the
interpolated input signal ().x n

...... ...

()x n 1()x n

2 ()x n

()px n

1ˆ ()y n

2ˆ ()y n

ˆ ()py n

ˆ()y n
1sh

2sh

sph

i
+ +

+ +

+

Vsh

Fig. 1. Block diagram of an interpolated Volterra structure.
The sparse first-order coefficient vector of the interpolated
Volterra filter is obtained by setting to zero 1L of each L
coefficients of the conventional Volterra first-order block [6], [7],
which by considering T

1 1 1 1[(0) (1) ()]h h h Nh results in
T

1s 1 1 1 s{ (0) 0 () 0 [(1)] 0 0} .h h L h N Lh (14)
Thus, the number of nonzero coefficients in (14) is

s (1) 1N N L (15)

where represents the truncation operation.
The remaining pth-order sparse coefficient vectors are obtained as
described in [6]. The first-order input vector is given by

T
1() [() (1) (2) (1)] .n x n x n x n x n Nx (16)

By considering that
T
M() ()x n nx i (17)

with
T

M () () (1) (2) (1)n x n x n x n x n Mx (18)
expression (16) is rewritten as

T
1 1() ()n nx X i (19)

for
1 M M M() [() (1) (1)]n n n n NX x x x . (20)

Thus, the output of the sparse first-order block is
T T

1 1 1s 1 1sˆ () () () .y n n nx h i X h (21)
The input vectors for the other blocks are obtained recursively by

1 1() () ()p pn n nx x x . (22)
By considering (17), (22), and the Kronecker mixed-product rule
[2], the output of the sparse second-order block can be written as

T T T
2 2 2s 1 1 2s

T T T
1 1 2s 2 2 2s

ˆ () () [() ()]

() () () ()

y n n n n

n n n

x h i X i X h

i i X X h i X h
 (23)

with 2i i i and 2 1 1() () ().n n nX X X
Now generalizing, the output of the pth-order sparse block is

T
sˆ () ()p p p py n ni X h (24)

with
1p pi i i (25)

and
1 1() () ().p pn n nX X X (26)

Then, considering
T T T T

V 1 2 2() [() () ()]P Pn n n nx i X i X i X (27)
and

T T T T
Vs 1s 2s s[]Ph h h h (28)

the output of the interpolated Volterra filter is given by

T
V Vs

1
ˆ ˆ() () () .

P

p
p

y n y n nx h (29)

The interpolated Volterra filter can also be implemented by
considering sparsity and interpolation only in the nonlinear blocks
[6]. Such an approach is known as the partially interpolated
Volterra (PIV) structure, presenting almost the same number of
coefficients of the fully interpolated Volterra (FIV) approach, since
the nonlinear blocks are the most coefficient demanding ones [6].

4. FULLY LMS ADAPTIVE INTERPOLATED
VOLTERRA STRUCTURE

The implementations of adaptive interpolated Volterra structures
[6] [adaptive fully interpolated Volterra (AFIV) structure and
adaptive partially interpolated Volterra (APIV) structure] are based
on adapting only the sparse filter [6] in the structure. The
advantage of such an approach is that all standard adaptive
algorithms can be considered. However, the use of a fixed input
interpolator results in a poor performance. Then, to make use of an
adaptive interpolator may improve such a situation. In this section,
the expressions for a fully LMS adaptive interpolated Volterra
structure are derived. Starting from a similar approach to [8], the
error signal is given by

T
V Vs

1
ˆ ˆ() () () () () () ()

P

p
p

e n d n y n d n y n d n nx h (30)

where ()d n represents the signal to be estimated by the adaptive
filter. The cost function for deriving the LMS algorithm is the
instantaneous estimate of the mean-square error (MSE), given by

3614

2
MSE

ˆ () ()J n e n . (31)
The coefficients of the interpolated structure are updated
proportionally by using the gradient of the cost function (31) [8],
[9]. Thus, for the sparse Volterra filter the following update
expression is obtained:

Vs

2
Vs Vs V(1) () ()n n e nhh h (32)

where V denotes the step-size parameter and
Vs

2()e nh is the

gradient of the cost function with respect to Vs ()nh . By using the
derivative chain rule, the gradient vector is written as

Vs

2 2
2

Vs Vs

() () ()()
() () ()

e n e n e ne n
n e n nh h h

. (33)

Thus from (30), the right-hand side (r.h.s.) terms of (33) are
2() 2 ()
()

e n e n
e n

 (34)

and

V
Vs

() ().
()

e n n
n

x
h

 (35)

Therefore, the LMS update equation for the sparse filter is given
by

Vs Vs V V(1) () 2 () ()n n e n nh h x . (36)

Note that (36) is similar to the update expression of the sparse filter
of the AFIV and APIV structures [6]. When a fixed interpolator is
used, many of the elements of V ()nx can be reused from the
previous iteration. This condition is not possible in the fully
adaptive approach since the interpolator filter is time varying,
increasing thus the computational complexity of the structure. A
solution to this problem is to assume that the interpolator filter has
a slow adaptation rate and therefore V ()nx can be approximately
obtained in a similar way as the fixed interpolator case.

The updating process for the interpolator filter is given by
2

i(1) () ()n n e nii i (37)

where i is the step-size parameter. Then, from (30) and
considering the derivative chain rule, we have

2 2
2 () () ()() .

() () ()
e n e n e ne n

n e n ni i i
 (38)

The first r.h.s. term of (38) results in (34), while the second one is
given by

1

ˆ ()() () .
() () ()

P
p

p

y ne n y n
n n ni i i

 (39)

Then, from (21) and considering the vector differentiation rules,
described in [10], we get

T
1

1 1s 1 1s
ˆ () () () () () ().
() ()

y n n n n n n
n n

i X h X h
i i

 (40)

From (24), (25) and [10], we can write
T

s
ˆ () ()

() ()
() ()
p p

p p
y n n

n n
n n

i
X h

i i
 (41)

with
T T

1T T
M 1

() ()
() () .

() ()
p p

p
n n

n n
n n

i i
I i i

i i
 (42)

Thus, by considering (26), (42), and the Kronecker mixed-product
rule [2], (41) can be rewritten as

T
1T T

1 1 1 1 s
ˆ () ()

() () () () ()
() ()
p p

p p p
y n n

n n n n n
n n

i
X x x X h

i i
. (43)

From (43), the gradient of the second-order block output signal
with respect to ()ni is

T T2
1 1 1 1 2s

ˆ () [() () () ()] ().
()

y n n n n n n
n

X x x X h
i

 (44)

Due to the symmetric characteristic of 2sh [2s 2s(,) (,),h j k h k j

k and j], one verifies that T T
1 1 2s 1[() ()] () [()n n n nX x h x

1 2s()] ()n nX h and that also (44) can be rewritten as

T2
1 1 2s

ˆ () 2[() ()] ().
()

y n n n n
n

X x h
i

 (45)

The symmetric characteristic is also observed in the other
nonlinear blocks, resulting in similar expressions. Thus, the
generalized expression for the gradient of the output of a pth-order
block with respect to ()ni is given by

T
1 1 s

ˆ ()
[() ()] ().

()
p

p p
y n

p n n n
n

X x h
i

 (46)

Finally, the update expression for the interpolator coefficients is

T
i 1 1 s

1
(1) () 2 () [() ()] ().

P

p p
p

n n e n p n n ni i X x h (47)

Since the interpolator is time varying, the element T
1()p nx in (47)

should be entirely determined at each iteration. However, due to
complexity questions, the same approximation adopted for
evaluating V ()nx in (36) is used here.

Fully adaptive interpolated Volterra structures can be
implemented either by considering a fully interpolated Volterra
(FIV) structure or a partially interpolated Volterra (PIV) one. The
differences in the adaptive process between the fully adaptive FIV
(FAFIV) and fully adaptive PIV (FAPIV) structures are very small
and the update expressions are easily obtained from (36) and (47).

Regarding the computational burden, Fig. 2 shows the number
of operations per sample as a function of the memory size for
implementing a conventional Volterra filter, the AFIV and FAFIV
structures. From this figure, it is evident that the proposed
approach provides considerable computational savings when
compared with the conventional Volterra implementation.

Memory size
0 10050 150
0

25000

50000

O
pe

ra
tio

n/
sa

m
pl

e

Fig. 2. Computational burden for a second-order LMS Volterra
implementation. (Solid line) conventional adaptive Volterra filter.
(Dashed line) AFIV structure. (Dotted line) FAFIV approach.

5. SIMULATION RESULTS
In this section, some simulation results are shown, illustrating the
performance of the fully adaptive interpolated structure in
comparison with the standard adaptive interpolated approaches.
The presented examples consider a system identification problem
[9]. The performance of the structures is assessed in terms of the
MSE obtained from Monte Carlo simulations (average of 100
runs). The simulated structures are second-order AFIV and FAFIV
ones. The interpolation factor is 2L and the coefficients of the

3615

fixed interpolator used by the AFIV structure is given by
T[0.5 1 0.5]i . In the case of the FAFIV structure, the

interpolator filter is initialized with T[0.5 1 0.5]i . The input

signal is a white Gaussian with variance 2 1x , and the additive

noise added to ()d n is a white Gaussian with variance 2 410 .z

Example 1: In this example, the memory size of the plant as well
as length sparse filters are equal to 11 (11)N . The step-size
parameter is

1max / 2 for the AFIV structure, and

2i V max / 2 for the FAFIV structure (
1max and

2max are
the maximum step-size values, obtained experimentally). The MSE
results are shown in Fig. 3, from which one observes a better
performance of the FAFIV structure as compared with the AFIV
one. Fig. 4 shows the first-order filter coefficients of the plant and
the steady-state equivalent ones for each adaptive structure.
Figs. 5 and 6 show the second-order kernels, illustrating the
surface plots. In this case, one observes the existing match between
the plant and the estimated kernels, which is much better for the
FAFIV structure than for the AFIV one.

FAFIV

AFIV

0 80002000 120004000 6000 10000
Iterations

-30

-20

-10

0

M
SE

Fig. 3. MSE curves for Example 1.

0 82 124 6 10

0

0.2

0.4

0.6

1m

1

 1
(

)
h

 m

Fig. 4. Coefficient curves for the first-order block from Example 1.
(Solid line) plant. (Dashed line) AFIV structure. (Dotted line)
FAFIV structure.

0 0
5

10
5

10

0.06

0

2

 1

 2
(

)
h

 m
m,

2m 1m

Fig. 5. Superposition of second-order coefficient surfaces for
Example 1. (Solid surface) plant. (Wireframe surface) AFIV
structure.

0 0
5

10
5

10

0.06

0

2

 1

 2
(

)
h

 m
m,

2m 1m

Fig. 6. Superposition of second-order coefficient surfaces for
Example 1. (Solid surface) plant. (Wireframe surface) FAFIV
structure.

Example 2: In this example, the used plant is the same given in
[11, Example 2]. The memory sizes and step-size values are the
same as in Example 1. The MSE curves are shown in Fig. 7. Now,
one notices that the performance difference between the AFIV and
the FAFIV structures is smaller than in the previous example. This
is due to the fact that the fixed interpolator of the AFIV structure is
in a better agreement with the characteristics of the plant used in
this example, resulting in an improved performance. However,
even in this case, a slightly better performance of the FAFIV
structure is still verified, thus confirming the effectiveness of the
proposed approach.

AFIV

FAFIV

0 80002000 100004000 6000
Iterations

-30
-20

-10

0

M
SE

Fig. 7. MSE curves for Example 2.

6. CONCLUSIONS
This paper presents the derivation of the LMS algorithm for a fully
adaptive interpolated Volterra structure. The proposed approach
allows improving the performance of standard adaptive
interpolated Volterra structures, providing computational savings
in comparison with the standard adaptive Volterra filter. The
presented simulation results verify the effectiveness of the
proposed algorithm.

7. REFERENCES
[1] L. Tan and J. Jiang, “Adaptive Volterra filters for active control of

nonlinear noise processes,” IEEE Trans. Signal Processing, vol. 49,
no. 8, pp. 1667-1676, Aug. 2001.

[2] V. J. Mathews and G. L. Sicuranza, Polynomial Signal Processing,
John Wiley & Sons Inc., 2000.

[3] L. Tan and J. Jiang, “An adaptive technique for modeling
second-order Volterra systems with sparse kernels,” IEEE Trans.
Circ. and Syst. II-Analog and Digital Signal Processing, vol. 45,
no. 12, pp. 1610-1615, Dec. 1998.

[4] A. Fermo, A. Carini, and G. L. Sicuranza, “Simplified Volterra filters
for acoustic echo cancellation in GSM receivers,” in Proc. European
Signal Processing Conf. (EUSIPCO), Tampere, Finland, Sep. 2000.

[5] M. J. Reed and M. O. J. Hawksford, “Efficient implementation of the
Volterra filter”, IEE Proc.-Vis. Image Signal Processing, vol. 147,
no. 2, pp. 109-114, Apr. 2000.

[6] E. L. O. Batista, O. J. Tobias, and R. Seara, “A mathematical
framework to describe interpolated adaptive Volterra filters,” in Proc.
IEEE Int. Telecomm. Symp., Fortaleza, Brazil, Sep. 2006,
pp. 144-149.

[7] O. J. Tobias and R. Seara, “Analytical model for the first and second
moments of an adaptive interpolated FIR filter using the constrained
filtered-X LMS algorithm,” IEE Proceedings – Vision, Image, Signal
Process., vol. 148, no. 5, pp. 337-347, Oct. 2001.

[8] E. L. O. Batista, O. J. Tobias, and R. Seara, “New insights in adaptive
cascaded FIR structure: application to fully adaptive interpolated FIR
structures,” in Proc. 15th European Signal Processing Conf.
(EUSIPCO), Poznan, Poland, vol. 1, Sep. 2007, pp. 370-374.

[9] S. Haykin, Adaptive Filter Theory, 4th ed., Prentice-Hall, 2002.
[10] J. W. Brewer, “Kronecker Products and Matrix Calculus in System

Theory,” IEEE Trans. on Circuits and Systems, vol. CAS-25, no. 9,
pp. 772-781, Sep. 1978.

[11] E. L. O. Batista, O. J. Tobias, and R. Seara, “Border effect removal
for IFIR and interpolated Volterra filters,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing (ICASSP), Honolulu, USA,
vol. 3, Apr. 2007, pp. 1329-1332.

3616

