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ABSTRACT

In design of experiments for nonlinear regression model identifica-
tion, the design criterion depends on the unknown parameters to be
identified. Classical strategies consist in designing sequentially the
experiments by alternating the estimation and design stages. These
strategies consider previous observations (already collected data)
only while updating the estimated parameters. This paper proposes
to consider the previous observations not only during the estima-
tion stages, but also in the criterion used during the design stages.
Furthermore, the proposed criterion considers the robustness re-
quirement: an unknown model error (misspecification) is supposed
to exist and is modeled by a kernel-based representation (Gaussian
process). Finally, the proposed sequential criterion is compared with
a model-robust criterion which does not consider the previously
collected data during the design stages, with the classical D-optimal
criterion and L-optimal criterion.

Index Terms— sequential design of experiments, Gaussian pro-
cess, nonlinear regression, robust design, parameters identification.

1. INTRODUCTION

This paper addresses the problem of designing experiments for pa-
rameters identification for nonlinear regression models. The Design
of Experiments (DOE) analysis is expected to entail a regression
whose response function is nonlinear in the parameters.

Let t(x) be a target function which we desire to approximate
by a nonlinear regression model η(θ, x) where θ is the parameters
vector. Suppose that θ∗ is the parameters vector that will best ap-
proximate the target function t(x):

θ∗ = arg min
θ

∫
X

(t(x) − η(θ, x))2 dx (1)

where X is the experimental domain. θ∗ is unknown and has to be
estimated.

Suppose that a set of n collected data {(xi, yi) ∈ X × R, i =
1, ..., n} has already been collected. The xi’s form the initial design
denoted by ξn = [x1, ..., xn]�. The yi’s are noisy observations of
the target (yi = t(xi)+ ei), where the observation errors ei are nor-
mal and i.i.d

(
ei ∼ N (0, σ2

e)
)
. At this stage, the unknown param-

eters vector θ∗ may be estimated from the n collected observations
using a nonlinear least square estimator as follows:

θ̂n = arg min
θ

n∑
i=1

(yi − η(θ, xi))
2

(2)

Suppose that we desire to refine the parameters estimation by adding
a new design point xn+1 and its corresponding observation value
yn+1 to the collected data. Then, the problem of sequential design

of experiments is to choose the next design point xn+1 that will best
refine the parameters estimation.

Classical sequential strategy was first proposed by Box and Hun-
ter [1]. Afterwards, many works were progressed following the same
classical strategy. Using the results in [2], Titterington and his col-
laborators [3] were able to show that the usual asymptotic analysis
based on least squares estimation is still valid for sequential design in
nonlinear models. As pointed out by several authors ([4], [5], [6]),
the most attractive feature of sequential DOE is its ability to opti-
mally utilize the dynamics of the learning process associated with
experimentation and parameters identification.

The classical sequential strategy discussed in the literature con-
siders the previously collected data while computing θ̂n during the
estimation stages. This paper suggests also considering the collected
data while deriving the design criterion in the design stages.

Moreover, classical experimental design criteria assume that the
target function t(x) is perfectly represented by the regression model
η(θ∗, x). If it is not satisfied, this assumption will introduce a bias in
the parameters estimation. An important work that solves such draw-
backs was done by Yue and Hickernell [7]. In our paper, the model
error (misspecification) is considered and modeled by a kernel-based
representation (Gaussian process).

The paper is organized as follows. Section 2 presents two classi-
cal design of experiments criteria (D-optimality, L-optimality). The-
se two criteria will be used for comparison purposes with the new
proposed criterion. Although the meaning of the proposed criterion
is quite natural, its derivation is a challenging task. Therefore, sec-
tion 3 presents the proposed criterion and its associated mathemat-
ical developments. In section 4, the new approach is applied on a
nonlinear regression example. The obtained designs are compared
with other designs obtained from the same criterion without taking
into consideration the previously collected data during the design
stages, the D-optimal and L-optimal criteria.

2. CLASSICAL DESIGN OF EXPERIMENTS CRITERIA

Presenting the L-optimal criterion will be helpful for the proposed
criterion derivation because it is based on the same principle. The
D-optimal criterion is presented for comparison purpose.

2.1. D-optimality

Having a set of n collected data, the D-optimality in nonlinear prob-
lems consists in choosing the next design point x∗

n+1 which mini-
mizes the determinant of the inverse of the Fisher matrix:

x∗
n+1 = arg min

xn+1∈X
det

(
∇M�

n+1∇M n+1

)−1

(3)

where ∇M n+1 is a (n + 1) × d matrix where each row is equal to

(∇η(θ̂n, xi))
� which is the gradient of η(θ̂n, xi).
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2.2. L-optimality

Let xn+1 be a candidate value for the new design point and yn+1

the observation made at this design point. Then, θ̂n+1, the nonlinear
least square estimation of θ, is computed using n + 1 points:

θ̂n+1 = arg min
θn+1

n+1∑
i=1

(yi − η(θn+1, xi))
2

(4)

The L-optimality criterion attempts to choose the new design
point xn+1 that minimizes the average prediction error over the en-
tire experimental domain. The prediction error is defined as the In-
tegral Quadratic Error (IQE):

IQE(x1, ..., xn+1, e1, ..., en+1) =

∫
X

|t − t̂|2dx (5)

where t̂(x) = η
(
θ̂n+1, x

)
is the target function estimation.

The IQE depends on the known design points ξn, the new design
point xn+1 and the observation errors which are unknown. Thus, an
expectation over the observation errors is taken in order to ensure a
good performance averagely over their realizations.

Taking the total expectation of the IQE in (5), the Integral Quad-
ratic Risk (IQR) can be written as follows:

IQR(xn+1) = E
(en+1)

[∫
X

|t − t̂|2dx

]
(6)

where en+1 is the observations error vector. The L-optimality con-
sists in choosing the design point x∗

n+1 that minimizes (6):

x∗
n+1 = arg min

xn+1∈X
[IQR(xn+1)] (7)

Solving the optimization problem in (7) requires an analytic expres-
sion of t̂ and therefore an analytic expression of θ̂n+1 in (4).

Suppose that for a sufficient number of observations, θ̂n, θ∗ and
θ̂n+1 are approximately the same. Then, a first order Taylor series
expansion may be used to linearize the model around the estimated
parameters:

η(θ∗, x) ≈ η(θ̂n, x) + ∇η(θ̂n, x)�(θ∗ − θ̂n) (8)

Therefore, the error in (4) may be approximated by:

yi− η(θn+1, xi)≈η(θ̂n, xi)+∇η(θ̂n, xi)
�(θ∗− θ̂n)

+ ei − η(θ̂n, xi)

−∇η(θ̂n, xi)
�(θn+1 − θ̂n)

(9)

Replacing the error by its approximation, (4) is written as follows:

θ̂n+1 = arg min
θn+1

n+1∑
i=1

(
∇η(θ̂n, xi)

�(θ∗ − θn+1) + ei

)2

(10)

For simplification and computation purposes, the above equation is
written in vectorial form as follows:

θ̂n+1 = arg min
θn+1

‖∇M n+1(θ
∗ − θn+1) + en+1‖2

(11)

Therefore, the solution of (11) is given by:

θ̂n+1 = θ∗ +
(
∇M�

n+1∇M n+1

)−1 ∇M�
n+1en+1 (12)

The L-optimality IQR is then rewritten in an explicit form:

IQR(xn+1)= E
(en+1)

∫
X

[
|ψ�

n+1(x) en+1|2
]
dx (13)

where ψn+1(x) = ∇M n+1

(∇M�
n+1∇M n+1

)−1 ∇η(θ̂n, x).
This expression can be written in a simplified form:

IQR = σ2
e tr

(
Iηη

(
∇M�

n+1∇M n+1

)−1
)

(14)

where Iηη =
∫

X
η(θ̂n, x)η(θ̂n, x)�dx which can be computed an-

alytically. One can see that the last IQR expression is suitable for
implementation and optimization.

3. THE PROPOSED CRITERION DERIVATION

Now, suppose that the target function is not perfectly represented
by the regression model. A model error (misspecification) exists.
Therefore, the target function t is:

t(x) = η(θ∗ , x) + r(x) (15)

where the misspecification r(x) is an unknown function. We choose
to model it by a Gaussian process [9]. A Gaussian process is a ran-
dom field defined by its mean and covariance function:

E
r
{r(x)} = 0, ∀ x ∈ X

E
r
{r(x)r(x′)} = c(x, x′), ∀ (x, x′) ∈ X2

The relevance of modeling the misspecification as a Gaussian pro-
cess rises because for some classes of covariance functions, Gaus-
sian processes span a rather large space (infinite-dimensional).
Therefore, this type of representation matches the robustness re-
quirement: the design point xn+1 will guarantee a good level of
performance (on average) over the set of potential misspecifications.

Now, the estimated parameters θ̂n+1 depends on the model error
r(x), thus equation (12) becomes:

θ̂n+1 = θ∗ + Ψn+1 zn+1 (16)

where Ψn+1 =
(∇M�

n+1∇M n+1

)−1∇M�
n+1 and zn+1 is the

observations-model errors vector generated by a Gaussian process
z(x): mean 0 and covariance c(x, x′) + σ2

eδ(x − x′).
The chosen statistical representation for r(x) allows to take ex-

pectation of the IQE in (5) over the model and observation errors.
The IQR of the Model-Robust criterion is written as follows:

IQR(xn+1) = E
(en+1,r)

[∫
X

|t − t̂|2dx

]
(17)

Having a set of n previously collected observations will pro-
vide important information about the random variables en and r(x).
Hence, introducing this information in the design criterion will im-
prove the criterion performance and refine the parameters estima-
tion. This idea was first discussed in [8] showing its workability in
linear situations. This paper adopts this idea for nonlinear situations.
Therefore, the criterion used in the design stages is as follows [8]:

IQR(xn+1) = E
(en+1,r)/CD

[∫
X

|t − t̂|2dx

]
(18)

where /CD means that all the probability density functions are cal-
culated conditionally to the already collected data.
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By expanding equations (16) and (18), the IQR can be written
as follows:

IQR(xn+1)=

∫
X

{
E

(en+1,r)/CD

[r2(x)]

}
dx

+

∫
X

{
E

(en+1,r)/CD

[ψ�
n+1(x)zn+1z

�
n+1ψn+1(x)]

}
dx

−2

∫
X

{
E

(en+1,r)/CD

[r(x)ψ�
n+1(x)zn+1]

}
dx

(19)

The expectation calculation in equation (19) becomes a bit more
complicated because of considering previous information. Having
a set of collected data will provide information about the random
variables zn, which is introduced in form of constraints. Let yn be
the n×1 vector of known observations yi. Then, yn = η(θ∗, ξn)+
zn. According to (8), this equation can be written as follows:

yn = η(θ̂n, ξn) + ∇M n(θ∗ − θ̂n) + zn (20)

Generally, n > d. Therefore, the model matrix ∇Mn may be
divided into two sub-matrices: ∇MB a d × d reversible matrix and
∇MB̄ a (n − d) × d matrix. Also, ξn, yn and zn are divided
into ξn = [xB ; xB̄ ], yn = [yB ; yB̄ ] and zn = [zB ; zB̄ ]
respectively. Therefore, (20) can be written as follows:

yB̄ = η(θ̂n, xB̄)+∇MB̄ΨByB−∇MB̄ΨBη(θ̂n, xB)

− ∇MB̄ΨBzB + zB̄

(21)

where ΨB =
(∇M�

B∇M B

)−1∇M�
B . Let the constraint matrix

Nk = [−∇MB̄ΨB , Ik] (Ik is the identity matrix, k = n−d), then
equation (21) can be written in matrix form as follows:

Ck = Nk[zB ; zB̄ ]=Nk[yB − η(θ̂n, xB); yB̄ − η(θ̂n, xB̄)]

= ck

(22)

The constraints matrix dimension is k × n, which means that there
are k constraints over zn. The constraints vector ck is computed
from yn.

Because of the linearity and the jointly Gaussian character of the
constraints, all random variables (constraints Ck, errors r(x) and
zn) remain Gaussian and therefore the IQR in (19) may be com-
puted. In the following, a detailed explanation of the computation
procedure of (19) is given. The expectation in (19) is taken over the
observations error and model error. Therefore, it is required to com-
pute E

(en+1,r)/CD

(U2) and E
(en+1,r)/CD

(UV ) where U and V can be

the model error r(x) or the model-observations error z(x). There-
fore, one has to compute the conditional mean mU/ck

and variance

σ2
U/ck

of U or V and the jointly conditional variance σ2
UV/ck

(x) of

U and V . Using Bayes rules:

PU/Ck
(u/ck) =

P(U,Ck)(u, ck)

PCk(ck)

∝ exp

[
−1

2

(u − mU/ck
)2

σ2
U/ck

] (23)

The probability of (U, Ck) is given by:

P(U,Ck)(u, ck) ∝ exp

[
−1

2
[u ; ck]� S−1 [u ; ck]

]
(24)

where S is the covariance matrix of [U ; Ck] constructed from
∑

C
the covariance matrix of Ck:∑

C
= Nk

∑
Z

N�
k (25)

with
∑

Z
be the covariance matrix of zn .

The identification of (23) with (24) gives the mean and variance
of U/ck :

mU/ck
=

−∑k+1
i=2 (S−1)1,i × ci−1

(S−1)1,1

σ2
U/ck

=
1

(S−1)1,1

(26)

As can be seen from the second and third terms of the IQR (19), one
has to compute the jointly conditional variances of r(x), z(xi) and
z(xi), z(xj). The way of computing this jointly conditional variance
is different from the one discussed above:

σ2
UV/ck

= (S−1
UV )1,2 (27)

where SUV is the 2 × 2 matrix in the upper left corner of S:

SUV = (S−1
1 )1→2,1→2 (28)

and S1 is the covariance matrix of [U ; V ; Ck].
Finally, the integrals in equation (19) are calculated using nu-

merical integration.

4. ILLUSTRATIVE EXAMPLE

Consider the following nonlinear model:

η(θ, x) =
1

1 + exp (−θ1 − θ2x)
+

1

1 + exp (−θ1 + θ2x)
(29)

The target function t(x) = η(θ, x) + p(x), where p(x) is a poly-
nomial of degree m that represents the deviation form the nonlinear
model (misspecification). Let θ1 = 1, θ2 = 6 and m = 6.

The Gaussian kernel is used because it is the most used kernel
for the Gaussian process covariance [9]:

c(x, x′) = s2 exp

[
−

(
x − x′

λ

)2
]

, ∀(x, x′) ∈ X2
(30)

where, s2 (Gaussian process variance) and λ (correlation distance)
are the Gaussian process parameters. The kernel is used with the
values s2 = 1 and λ = 0.6. The approach used to choose these
values is based on a maximin efficiency criterion [10].

The centered interval [−1; 1] is taken to be the experimental do-
main X. The design ξn = [−1, 0, 1] is taken to be the initial design.

The proposed approach is applied by varying the number of
added points in the design from 1 to 20. The IQE PDF are com-
puted by Monte-Carlo method with 100 sequences of noise where
the observations error variance σ2

e = 0.05. (Computational time
≈ 85 seconds per simulation using MatlabTM and a 2.8 GHz Intel
Pentium processor).

Figure 1 shows the performance (in terms of IQR) of the com-
plete proposed approach (eq.(18)), the proposed approach without
considering the collected data as prior information (eq.(17)), L-opti-
mal design (eq.(7)) and D-optimal design (eq.(3)).

The results show the advantage of considering the model errors
(faster convergence to the minimum IQR of the proposed approaches
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over the other two approaches) and the advantage of computing all
the probabilities conditionally to the collected data.

Another illustration is the comparison of the IQE histograms for
a fixed number of added design points. Figure 2 gives the IQE his-
tograms of the four designs where 10 design points are added. The
corresponding IQE means are shown in Table 1.

Figure 3 is an example of the target function with the approxi-
mated model (29) where its parameters are estimated using the de-
sign points (6 added design points) obtained with the L-optimal and
the proposed design criteria. It can be seen that the proposed crite-
rion gives a better performance over the classical L-optimality.

D-optimal L-optimal Proposed Proposed
without /CD with /CD

〈IQE〉 0.0211 0.0174 0.0149 0.0102

Table 1. IQE Means

5. CONCLUSION

This paper has proposed a sequential model-robust DOE criterion
for nonlinear regression problems. The proposed criterion takes into
consideration the previously collected data when designing expe-
riments during the design stages. Moreover, the proposed criterion
considers the problem of robustness by taking into account a model
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Fig. 3. Fitting using the proposed criterion with /CD and L-optimal

error which is modeled by a Gaussian process. Finally, an illustra-
tive example has shown that the proposed criterion gives better per-
formance over criteria that do not consider previous collected data
during the design stages.
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