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Il Park, José C. Prı́ncipe∗

Computational NeuroEngineering Laboratory
University of Florida

Gainesville, FL 32611, USA

ABSTRACT

We propose a novel nonlinear extension to Granger causality.

It is derived from a nonlinear mapping of a stochastic process

using the recently introduced generalized correlation measure

called correntropy. The method is demonstrated by detecting

the direction of coupling in a chaotic system where the origi-

nal Granger causality failed.

Index Terms— Nonlinear systems, Causality

1. INTRODUCTION

Resolving the dependencies among time series is challeng-

ing because the system dynamics mixes information through

time. One of the most successful tools is the Granger causality

which utilizes the temporal order of dependence of a bivariate

stochastic process (for review of causality measures see [1]).

Given two time series X(t) and Y (t), if the one step predic-

tion error of X(t) using univariate autoregressive model is

significantly larger than the bivariate autoregressive model of

both time series, Y (t) is said to be Granger causal to X(t).
Although the original formulation can be robustly applied to

various signals, the method as explained is limited to linear

causality because of the linear prediction scheme.

We propose a nonlinear extension of Granger causality by

mapping the original stochastic process into a novel stochas-

tic process induced by centered correntropy [2]. Correntropy

is a recently introduced generalized correlation measure that

can capture the higher-order statistics of random variables. It

was Parzen that showed the possibility; for any positive semi-

definite kernel on random variables, there exists a mapping

from a stochastic process to a Gaussian process [3]. We can

perform Granger causality in the nonlinearly related Gaussian

process that is effectively a nonlinear causality measure of the

original stochastic process. In the algorithm we present, the

mapping is implicitly used–only the covariance functions of

the transformed bivariate process is required, and moreover

it is immune to the approximations needed to get back to the

input space [4].
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2. GRANGER CAUSALITY AND ITS EXTENSIONS

Let X(n) and Y (n) be real valued discrete time stochastic

process for n ∈ N. We will model the stochastic process as

autoregressive (AR) processes. Univariate and bivariate AR

models of order L can be written as

X(n) =
L∑

k=1

wX(k)X(n − k) + εX

Y (n) =
L∑

k=1

wY (k)Y (n − k) + εY

X(n) =
L∑

k=1

wXX(k)X(n − k)

+
L∑

k=1

wXY (k)Y (n − k) + εXY

Y (n) =
L∑

k=1

wY Y (k)Y (n − k)

+
L∑

k=1

wY X(k)X(n − k) + εY X (1)

where wX , wY denote the coefficients for the univariate case,

while wXX , wXY , wY Y , wY X corresponds to the bivariate

case. The random variables for the one step prediction er-

rors are denoted as ε. If var(εXY ) < var(εX) in a significant

way, then Y (n) is Granger causal to X(n) and similarly for

var(εY X) < var(εY ). In the next section, we will use the

same scheme for a different stochastic process.

Above described Granger causality assumes that the sig-

nals are jointly wide-sense-stationary and fit an AR model.

In reality these assumptions can fail either due to non-

stationarity, or due to nonlinear dynamics or coupling that

cannot be well approximated by an AR model. There have

been several extensions to Granger causality to overcome

these problems. In order to deal with non-stationarity, av-

eraging over locally linear models is a possible solution [5].

For nonlinear dynamics, one can introduce a nonlinear pre-

dictor with invariant properties [6]. And finally there are

nonparametric methods that directly deals with conditional
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joint distributions or information flow [1]. The proposed

method which will be introduced in the next section still re-

quires the assumption of non-stationarity, but is able to deal

with mild nonlinearity.

3. CORRENTROPY GRANGER CAUSALITY

Given a family of random variables (or vectors) {X(t)}, and

a symmetric positive semi-definite kernel V (X(t),X(s)) :
(Ω → R) × (Ω → R) → R, a unique reproducing ker-

nel Hilbert space (RKHS) HV can be induced following

Parzen [3]. Parzen also proves that there exists a Gaussian

process {Z(t)} where the covariance function is given by

EZt,Zs
[ZtZs] = V (X(t),X(s)) [3]. Let V (·, ·) be the

correntropy as defined [7],

V (X(t),X(s)) = EXtXs
[K(X(t),X(s))] (2)

where K(·, ·) : R × R → R is a symmetric positive semi-

definite kernel. By choosing K to be a nonlinear kernel such

as the Gaussian kernel, we obtain a Gaussian process that

is nonlinearly related to the original stochastic process. Al-

though closely related, the induced nonlinear process should

not be confused with the stochastic process in the RKHS

mapped only via the deterministic kernel K as widely used

in kernel methods.

We can quantify the time series Z(t) via autoregressive

modeling. Then, knowing the mean and covariance of the

nonlinearly related random process, and assuming wide-sense

stationarity and ergodicity, we can perform linear regression

via least squares to derive the variance of the error [8]. In pre-

diction, due to the fact that the desired signal is in the RKHS,

the variance of the error can be estimated without calculating

the system output in the input space which cannot be done

without approximation in the correntropy filter proposed by

Pokharel and coworkers [4]. Therefore, for Granger causality

the correntropy RKHS is particularly useful.

If we choose the Gaussian kernel which is widely used

in kernel methods, the Taylor expansion can be used to show

the relation to the moments. Assuming a correntropy sense

stationary process [2],

VXY(τ) = E [G(X(t),Y(t + τ))] (3)

=
1√
2πσ

∞∑
k=0

(−1)k

(2σ2)kk!
EXY

[
(X(t) − Y(t + τ))2

]

=
1√
2πσ

[
1 − E[X(t)2] + E[Y(t)2]

2σ2

+
E[X(t)Y(t + τ)]

σ2
+ · · ·

]
, (4)

where G(x, y) = 1√
2πσ

exp(− (x−y)2

2σ2 ) is the Gaussian kernel

with kernel size σ. From Eq. (4), we can infer that if the

kernel size σ is large compared with the scale of the signal,

the value of correntropy is dominated by the cross-correlation

(the second order term of the expansion).

Since correntropy does not yield a zero mean process, we

remove the mean by centering in the RKHS, obtaining effec-

tively the centered correntropy. Approximating the expected

value by time averages, centered correntropy is estimated by

UXY(τ) =
1
N

N∑
i=1

G(Xi, Yi−τ ) − 1
N2

N∑
i=1

N∑
j=1

G(Xi, Yj),

(5)

where Xi and Yi denotes the i-th sample of the time series.

The centered correntropy function is a positive semi-definite

function [2], therefore the above derivation of nonlinear

Granger causality can be directly applied, that is, we use

the centered correntropy function as the covariance function

and estimate the AR coefficients via solving the Yule-Walker

equation. Furthermore, the AR coefficients and the covari-

ance function is enough for the estimation of error variance

of the model given by Eq. (1).

4. RESULT

To demonstrate the utility of the proposed method, we chose

the coupled nonlinear dynamical system proposed by Chen

and coworkers, for which the authors showed that the linear

Granger causality fails [5].

x(n) = 3.4x(n − 1)
(
1 − x2(n − 1)

)
e−x2(n−1) + 0.8x(n − 2)

y(n) = 3.4y(n − 1)
(
1 − y2(n − 1)

)
e−y2(n−1)

+ 0.5y(n − 2) + cx2(n − 2), (6)

where c is the coupling strength. From the equations it is

obvious that x(n) is driving y(n) but not vice versa. Also

note that the coupling term is nonlinear. A sample signal is

plotted in Fig. 1. The signal x(n) has two distinct regions and

switches between them which resembles the behavior of the

well known Lorenz attractor. The reconstructed attractor is

shown in Fig. 2.

The centered correntropy is a real valued function that can

be estimated given samples by Eq. (6), therefore we can plot

the autocovariogram to intuitively understand the nonlinear

transformation as demonstrated in Fig. 3. As a guideline, the

kernel size given by the Silverman’s rule of thumb is 0.22

since this attractor has a variance of 0.8 when the coupling is

0.5. When the kernel size is 10, the normalized centered cor-

rentropy is almost identical to the normal autocorrelation and

cross-correlation function as expected from Eq. (4). How-

ever, as the kernel size decreases, the relative amplitude de-

cay in autocorrentropy is faster than autocorrelation. More-

over, strikingly we observed that the centered cross corren-

tropy function is often inverted for small kernel sizes. This is

because the Gaussian kernel weights the neighborhood of the
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Fig. 1. A sample of time series Eq. (6). The coupling constant

was 0.8. Note that x(n) has two visually distinct value range.

Transient behavior is removed and the index is arbitrary.
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Fig. 2. The time embedded attractor of the time series Eq. (6).

(Left) The driving time series. x(n) versus x(n − 1) is plot-

ted. (Middle) The driven time series with coupling c = 0.8.

(Right) Instantaneous correlation x(n) versus y(n).

signal and ignores if the distance is large. As seen in Fig. 1,

the coupled chaotic system is highly uncorrelated for most of

the time. The small kernel size effectively weights primarily

regions where the differences in signal samples are close to

zero (unlike correlation that weights small and large differ-

ences equally), therefore it provides a very different quantifi-

cation of similarity between signals.

We compare the proposed method against (linear) Granger

causality method. Figure 5 shows the performance of the

methods. The correntropy based Granger causality can detect

the direction of coupling correctly if it is stronger than 0.3

while the classic Granger causality does not show significant

deviation from the baseline for all coupling values we tested.

The surrogate baseline was generated by shuffling the

pairs of x(n) and y(n) for different trials so that the tempo-

ral structure of individual time series is maintained but the

coupling is destroyed. Note that in the ideal situation, the

baseline in principle should have the value of 1. However, in

the proposed method, the coupling of the system changes the
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Fig. 3. Autocorrelation function and centered correntropy

for different kernel sizes σ = 0.2, 2, 10. From top to

bottom, the graphs correspond to normalized autocorrela-

tion/autocorrentropy of x(n), y(n), cross-correlation/cross-

correntropy of x(n)y(n + τ), x(n)y(n − τ).

scale and structure of the attractors, which means the kernel

size should be appropriately modified.
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Fig. 4. Effect of kernel size σ. X-axis is on 10 base log scale.

Note that the significance is higher for smaller kernel sizes.

The high variability of the linear Granger causality ob-

served in Fig. 5(a) is also observable in the proposed non-

linear extension when the kernel size σ gets larger as shown

in Fig. 4. The kernel size essentially determines the scale of

analysis. In the case of the dynamical system under investiga-

tion, a smaller kernel size is preferred. However, it should be

noted that smaller kernel sizes would generally require more

data for estimation.
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5. DISCUSSION

We proposed a nonlinear extension to Granger causality by

simply substituting the covariance function with centered cor-

rentropy function. It implicitly utilizes the nonlinearly related

stochastic process induced by correntropy. We demonstrated

that the proposed method can detect causality of a nonlinear

dynamical system where the linear Granger causality failed.

The kernel size parameter σ is the only additional free pa-

rameter, which is related to the scale of the dynamical system.

The proposed method approaches the linear Granger causality

when the kernel size is large. When the kernel size is smaller

than the dynamic range of the signal, the correntropy weights

the samples that are close to each other. In this sense, the

proposed method is similar to local linear averaging methods

for Granger causality [5], but without the assumptions and

complexity of estimating the neighborhoods over the attrac-

tor. However, the selection of optimal kernel size and model

order are left as open problems. 1
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(a) Linear Granger causality
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(b) Correntropy based Granger causality

Fig. 5. Performance comparison between linear and the pro-

posed nonlinear Granger causality. Higher error variance ra-

tio means stronger causality. The actual causality direction is

from X to Y (see Eq.(6)). The coupling was 0.5 and order 16

AR models were used for estimation.
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