ADAPTIVE ACOUSTIC ECHO CANCELLATION IN THE PRESENCE OF MULTIPLE
NONLINEARITIES

Kun Shi, Xiaoli Ma, and G. Tong Zhou

School of Electrical and Computer Engineering, Georgia Tech, Atlanta, GA 30332-0250, USA

ABSTRACT

A Hammerstein-Wiener system consists of a linear time invariant
subsystem sandwiched between two memoryless nonlinear blocks
as is the case of an acoustic system with a nonlinear loudspeaker and
a nonlinear microphone. We propose to model the memoryless non-
linear blocks of the Hammerstein-Wiener system using a linear com-
bination of nonlinear basis functions, and concentrate on the task
of parameter estimation for the nonlinear blocks. An adaptive al-
gorithm is proposed using a pseudo magnitude squared coherence
(PMSC) function-based criterion. The proposed method carries out
nonlinearity identification without knowing the linear block in the
Hammerstein-Wiener system. This is particularly useful for nonlin-
ear acoustic echo cancellation (NAEC) applications, where dealing
with the linear and nonlinear blocks together can be computation-
ally challenging due to the long room impulse response. Numerical
examples are provided to illustrate the performance of the proposed
method.

Index Terms— Hammerstein-Wiener system, pseudo magni-
tude squared coherence (PMSC) function, system identification, non-
linearity, acoustic echo cancellation

1. INTRODUCTION

A recent trend in mixed signal applications is to extend the use of
analog components beyond their linear regions in order to gain ad-
vantages such as power efficiency, but to rely on the power of digital
signal processing to “clean up the mess”. Nonlinear modeling and
identification techniques are thus of interest. Volterra models are
general but are too complex; simpler block based models have been
considered including the Hammerstein system, the Wiener system,
the Wiener-Hammerstein system, and the Hammerstein-Wiener sys-
tem, etc [1-8]. In this paper, we are interested in the Hammerstein-
Wiener system which consists of a linear time-invariant (LTT) system
“sandwiched” between two memoryless nonlinear blocks [3]. Our
interest in the Hammerstein-Wiener system stems from our desire to
work with an acoustic environment where both the microphone and
the power amplifier or the loudspeaker exhibit nonlinear behavior.
Numerous Hammerstein-Wiener system identification algorithms
have been proposed in the literature. In [3], an identification scheme
for single-input single-output (SISO) Hammerstein-Wiener systems
was developed. A very specific model structure was assumed in [3]
which limits its practical applicability. Building upon [3], a more
general blind identification technique for SISO systems was pro-
posed in [4]. An iterative method was developed in [5], and a linear
subspace intersection algorithm was extended in [6] for the identi-
fication of Hammerstein-Wiener systems. Multiple-input multiple-
output (MIMO) Hammerstein-Wiener systems were investigated in
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[7] with certain restrictions on the inputs. These existing methods
identify the linear block together with the nonlinear blocks requiring
heavy computational load when the linear block has a long memory.
In this paper, we develop an adaptive nonlinearity identifica-
tion method which estimates the nonlinear blocks without any prior
knowledge of the linear block. This is desirable in terms of com-
putational complexity especially when the linear block has a long
duration. Moreover, our method does not impose restrictive assump-
tions on the inputs, and does not impose restrictions on the nonlinear
models other than that the output nonlinearity has to be invertible.

2. PROBLEM STATEMENT

Consider the Hammerstein-Wiener model shown in Fig. 1, which
consists of an input memoryless nonlinearity f(-), a linear time-
invariant system h(n), and an output memoryless nonlinearity g(-).
Mathematically, because the Hammerstein-Wiener model includes
both the Hammerstein model and the Wiener model as special cases,
it covers a more general class of nonlinear systems than either of the
two models alone. The input s(n) and the output r(n) of the overall
system are related by

r(n) = g(f(s(n)) = h(n)), ()]
where * denotes linear convolution.
s(n) ) )
—  fO h(n) g ——

Fig. 1. Hammerstein-Wiener model.

Now the problem is on adaptively identifying the three blocks in
Fig. 1 based on measurements of the input s(n) and the output 7(n).

3. NONLINEARITY IDENTIFICATION USING THE PMSC
FUNCTION

Let us approximate the memoryless nonlinearity f(-) by a linear
combination of nonlinear basis functions fi(-) with corresponding
coefficients ay; possible choices for fi(-) include the polynomial
and the spline bases. The approximated output of f(-) is given as

Kf
f(s;a):zakfk(s)a a = [a15a27--'7aKf]T7 (2)
k=1

where a is unknown and needs to be estimated. We use the term
approximated to account for modeling error in f(-).

We assume that the output nonlinear function g(-) is memory-
less and is invertible. We strive to approximate the inverse of the
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output nonlinearity also by a linear combination of nonlinear basis
functions

Kg

g '(rB) = Zﬁkgk(r), B = [B1, B, ..., Bk,

k=1

]T

)

where g (r) is the k-th basis function whose input is 7. Note that
the nonlinearity g(-) is not identified directly in our proposed tech-
nique; instead, the inverse of g(-) is sought. The motivation is to
decouple the estimation of the linear and the nonlinear blocks and
also to identify the two nonlinear blocks in an alternating fashion as
we shall see later.

We seek to estimate the unknown parameter vectors o and (3
from the input-output measurement data. Throughout the paper,
fe() (k=1,2,...,Ky) and gi(-) (k = 1,2, ..., Kg) are assumed
as known nonlinear basis functions and their orders Ky and K, are
assumed to be known as well.

Let x(n) and y(n) be real-valued discrete-time random pro-
cesses. Define the pseudo magnitude squared coherence (PMSC)
function between z(n) and y(n) at normalized frequency f as [9]

_1Sn ()P
Sec(D)o?’

where Sy, (f) denotes the cross spectral density between z:(n) and
y(n) at frequency f; Sz« (f) is the power spectral density (PSD) of
z(n) at frequency f, and o, = E[y*(n)] is the power of y(n). It
can be shown that 0 < [*7_ Cuy (f)df < 15 [0 Cuy(f)df =1
ifand only if x(n) and y(n) are linearly related, i.e., y(n) = a(n) *
x(n) + b(n), where * denotes the linear convolution; a(n) and b(n)
are deterministic quantities and a(n) # 0 [9].
Define vectors of basis functions

f(n) = [fl(s(n))7f2(3(n))7'“7fo (s(n))] ) (%)

Cay(f) —05< f<0.5, 4)

g(n) = [91(r(n)), g2(r(n)), ..., g, (r(n))] , (6)

and output signals of the nonlinear modules
z(n;a) = f(s(n);e) = " f(n), @)
y(n:B) =g~ '(r(n): B) = B" g(n). ®)

If f(-; @) is a perfect match to f(-) and §~1(-; 3) is the inverse of
g(+) up to a scalar, then the processes z(n) and y(n) will be perfectly
linearly related. Since the metric | E'(i 5 Coy(f)df provides a means
for quantifying the linear association between two stationary random
processes, we propose to solve for the parameters a and 3 in the
nonlinear blocks as follows:

[&B] = arg max (. 9), ©)
where o5
J(e ) = [ CalfonB)r, (10)

Globally searching for o and 3 will incur high computational
complexity. However, given one of the unknown parameters, for
instance (3, we can form the signal y(n) according to (8). We also
infer from (7) that

o2 =" B[fm)f ()] a, (an

Sye(fia) = a’ sy f), (12)
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where sy¢(f) is a vector whose k-th element is the cross spectral
density between y(n) and fr(s(n)), 1 < k < K. Substituting (11)
and (12) into (10), the objective function given the parameter vector
3 can be reduced to

T
Jalp) = 2122, (13)
where
0.5
Ri=[ Syy (Nsu(Hsyp( A, (14)
R. = B [f(n)f"(n)] (15)

H denotes the Hermitian transpose, and y(n) is formed given the
current 3. A similar form holds for 3 given a. Therefore, the ob-
jective function (10) is a generalized Rayleigh’s quotient in o for
given 3 and vice versa. An alternating parameter estimation proce-
dure is then the following relaxation algorithm [8]

&(k) = arg max J (o, B(k — 1)), (16)

B(k) = arg ma J(a(k), B). (17)

Similar to [9], we solve an eigenvalue decomposition problem
Rld = AmaxRQd, (18)

where Amax 18 the largest generalized eigenvalue for the pair (R,
R.>). Similarly, given c, the parameters 3 can be solved using the
same equation (18), except that y(n) and f(n) are replaced by z(n)
and g(n), respectively. An adaptive algorithm was developed in [9]
to update the parameter € (which can be a or 3):

0" (n = URa(n)6(n ~ D g ()R, (m)(n1). (19)

o(n) = 2= =
6" (n—1Ri1(n)B(n—1)

Since the estimates of o and 3 depend on each other, we pro-
pose an iterative method for identifying the nonlinear parameters as
summarized in Table 1, where L denotes the data segment length.
Once the two nonlinear blocks have been identified, the linear block
can be found via least squares. We point out that the convergence of
the proposed iterative method is not guaranteed [8]. However, good
initialization usually leads to convergence, which has been demon-
strated by simulations. Note that the proposed method decouples
the identification of the linear part from the nonlinear part, since the
PMSC function is insensitive to the presence of an unknown lin-
ear block [9]. This feature is desirable for the NAEC problem, in
which case the length of the room impulse response has no effect on
the computational complexity. In the following section, we will pro-
pose a novel structure for the NAEC problem and apply the proposed
Hammerstein-Wiener system identification method.

Table 1. Iterative method to estimate parameter vectors o and 3 in
the nonlinear blocks.

Initialize o(0) and B3(0).

fork=0,1,...do
Alln € [kL, (k4 1)L): update y(n) using (8) based on B(k).
update ax(k + 1) using (19).
Alln € [EL, (k+ 1)L): update z(n) using (7) based on a(k + 1).
update 3(k + 1) using (19).

end for




4. APPLICATIONS TO NONLINEAR ACOUSTIC ECHO
CANCELLATION

Acoustic echo is a common phenomenon in telecommunication sys-
tems, such as in teleconferencing and hands-free telephone systems.
Traditionally, adaptive filters have been widely employed to remove
the acoustic echo based on the assumption of a completely linear
loudspeaker enclosure microphone system (LEMS) (including the
amplifier, the loudspeaker, the acoustic echo path and the micro-
phone). A competitive audio consumer market can favor low-cost
and small-sized analog components (such as the loudspeaker) which
usually exhibit nonlinear characteristics. Research results have shown
that linear acoustic echo cancellers fail when nonlinearity is present
in the LEMS [10].

Several methods have been proposed for NAEC. By consider-
ing the memoryless nonlinearity in the loudspeaker, the LEMS can
be well represented by the Hammerstein model [11,12]. In this pa-
per, we take into account the nonlinearity in both the loudspeaker
and the microphone, in which case the LEMS can be described by
the Hammerstein-Wiener model. However, to the best of our knowl-
edge, none of the existing Hammerstein-Wiener system identifica-
tion methods are suitable for the NAEC problem on hand, because:
(1) they are nonadaptive and thus can not be readily applied to a real
time echo canceller design; and (2) they incur large computational
load due to the presence of a long room impulse response.

local speech - -
y(n e(n
— r(n) N el
echo
D] s(n)
LEMS

Fig. 2. Proposed structure for NAEC.

We propose a new structure for NAEC design as shown in Fig.
2. The adaptive NAEC consists of three blocks. The nonlinear block
G '(-; B) models the inverse of the microphone nonlinearity. Thus,
the concatenation of the LEMS system with g~ *(-; 3) yields a Ham-
merstein system. For echo cancellation, we use a nonlinear block
f(:; &) and a finite impulse response (FIR) filter 4 (n) to model the
loudspeaker nonlinearity and room impulse response, respectively.
As usual, the goal of NAEC is to minimize the power of the residual
echo signal

e(n) = y(n) = 2(n) =g~ (r(n); B) — f(s(n); ) x h(n). (20)
The algorithm for estimating the nonlinear parameters is summa-
rized in Table 1. Afterwards, h(n) can be estimated using the nor-

malized least mean square (NLMS) algorithm as in existing approaches.

We point out that the insertion of the g~ () block in Fig. 2 also en-
hances the quality of the local speech by canceling out the micro-
phone nonlinearity.

5. SIMULATION RESULTS

In this section, we demonstrate the performance of the proposed
PMSC function-based criterion for (approximately) identifying the
unknown nonlinearities in the Hammerstein-Wiener system and its
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application to the NAEC problem. In the simulations for nonlin-
earity identification, the source signal s(n) was generated according
to an i.i.d. Gaussian distribution. Both nonlinear blocks obey the
following input-output relationship:

tanh(s) = (e** —1)/(e** + 1), 21)
where tanh denotes the hyperbolic tangent function. The linear
block is an FIR filter of length 256 whose coefficients were gen-
erated randomly. We approximate the nonlinear functions f(-) and
g~ *(+) by egs. (2) and (3), respectively, both with polynomial bases
and orders Ky = K, = 7 in the simulations. We thus encounter cer-
tain modeling errors, since f(+) and g~ *(-) are not really polynomial
functions. The simulations were carried out in a noise free environ-
ment. The total number of samples was N = 32, 768. The block
size used in the Welch method for power spectral density (PSD) esti-
mation was L = 256, and the overlap between blocks was P = 64.
« and 3 are initialized such that s(n) = z(n) and y(n) = r(n),
respectively.

Figs. 3 (a) and (b) show the performance of nonlinearity identi-
fication. Fig. 3 (a) shows the input nonlinearity f(-) and its estimate
f (+); it can be seen that the estimate approximates well the nonlin-
earity f(-) in the system. Fig. 3 (b) shows the output nonlinearity
g(-), the estimate of its inverse g~ *(-), as well as the concatenated
system consisting of g(-) followed by the nonlinear block §*(-),
i.e., g *(g(-)), which displays an approximate linear characteristic.

In Fig. 4, we show the estimate of the objective function in (10)
as a function of the number of iterations. It can be seen that J(cx, 3)
approaches one as the number of iterations increases. This implies
that the two signals x(n) and y(n) are increasingly linearly related,
indicating that f(-) and g~ () approach f(-) and g~*(-) respec-
tively, when a sufficient number of samples are available.

When applying to the NAEC problem, echo return loss enhance-
ment (ERLE) [11] is used to measure the performance of the pro-
posed nonlinear echo canceller

ERLE (dB) = 10log;, %

where y(n) and e(n) represent the microphone received echo signal
and the residual echo signal, respectively. The microphone received
signal r(n) was generated under the single-talk scenario with the
signal-to-noise ratio (SNR) set at 30 dB. Figs. 5 (a) and (b) show
the ERLE for NAEC with respectively, noise and speech signal as
the input; both demonstrate the effectiveness of the nonlinear echo
cancellation algorithm.

(22)

6. CONCLUSIONS

In this paper, we proposed a pseudo magnitude squared coherence
function-based criterion for the identification of the memoryless non-
linear blocks in a Hammerstein-Wiener system. The proposed method
decouples the identification of the nonlinear parts from the linear
part in the Hammerstein-Wiener system. This technique is particu-
larly suitable for nonlinear acoustic echo cancellation applications,
since the long room impulse response imposes heavy computational
burden in existing NAEC approaches.
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