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ABSTRACT
The high peak-to-average power ratio (PAR) encountered in

OFDM system has been a major obstacle in the implementa-

tion of power efficient transmitter. In this paper, we present a

new active constellation extension (ACE) based convex opti-

mization algorithm which reduces PAR through convex pro-

gramming. In comparison with previous convex program-

ming method, our method greatly reduces the complexity and

keeps the bit-error-rate (BER) performance. Moreover, our

method can be combined with other clipping based ACE al-

gorithms to further reduce the complexity with a slight perfor-

mance degradation. Simulation results are given in this paper

which show our method outperforms other ACE-based algo-

rithms.

Index Terms— Newton method, optimization methods,

iterative methods, power control

1. INTRODUCTION

Orthogonal Frequency-Division Multiplexing (OFDM) is a

technique using discrete multi-tone modulation with each

sub-carrier modulating in a conventional modulation scheme.

OFDM offers many advantages for multi-carrier transmission

at high date rate, particularly in mobile applications. How-

ever, the high peak-to-average power ratio has been a major

obstacle in the implementation of power-efficient transmit-

ter. An OFDM system with high PAR requires a power

amplifier (PA) with large dynamic range, or alternatively,

a perfect linearized saturating PA must back-off its maxi-

mum output power by approximately the PAR of the input

data for distortion-less transmission. While PA is non-linear,

additional back-off is necessary. These shortcomings are be-

coming more severe as technology goes to 3G and 4G times,

where power efficiency is a critical issue.

In [1], a PAR reduction method using repeated clipping

and filtering with ACE constraint, referred to as ACE-RCF,

is reported. In the same reference, an approximated gradient-

project method (ACE-SGP) is also developed with a variable

step size to speed up the convergence rate. In [2], the step
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size of ACE-SGP is further optimized so as to further ac-

celerate the convergence rate. This method is referred to as

ACE-SGPOPT. Although clipping based ACE algorithms are

easy to implement, the PAR reduction cannot reach the min-

imum. In [3], PAR reduction is formulated as a convex op-

timization problem based on error vector magnitude (EVM)

constraint. The minimum PAR solution is obtained by the in-

terior point method (IPM), but the computational complexity

of this method (EVM-IPM) is very high.

In this paper, we derive a customized IPM based on ACE

constraint (ACE-IPM) to minimize PAR. Our method gets

the global minimum PAR and outperforms other ACE algo-

rithms, with less computational complexity than EVM-IPM

[3]. Moreover, we can further reduce the complexity by em-

ploying clipping based ACE algorithms providing the initial

points setting.

Notations: We use small and large Greek (English) letters

in bold to denote complex (real) vectors and matrices, respec-

tively. � and � mean taking the real part and imaginary part,

respectively. 〈x, y〉 means inner product.

2. PAR MINIMIZATION

2.1. PAR Definition

The origin of PAR problem in OFDM system comes from

weighted sum of frequency domain random variables, which

makes time domain signal χ approach Gaussian distribution

by Central Limit Theorem. Mathematically, the PAR of a

given OFDM block in digital sample form can be written as:

PAR(χ) =
|χ|2∞

E[|χ|22]/N
(1)

2.2. ACE Constraint

The basic concept of ACE is shown in Fig.1, where the 16-

QAM constellation points in the frequency domain are di-

vided into three parts (inner points, boundary points and cor-

ner points) and allowed to adjust their real and imaginary

parts in the directions indicated by the arrows.
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Fig. 1. Constellation Points of 16QAM

2.3. Convex Formulation

Standard convex optimization algorithms operate on real

numbers. We formulate the PAR optimization problem as

minimizing the time-domain peak while keeping constella-

tion constrained, which can be cast as second order cone

programming (SOCP) [4]:

min p

subject to: |χk|2 ≤ p2 k = 1, 2, · · · , JN (2)

x = [�χ,�χ] = IFFT(c,b) (3)

sign(ci − ci) × sign(ci) ≤ 0 (4)

i = 1, 2, · · · , T

p ≥ 0 (5)

where [χ1 . . . χJN ]T = χ ∈ C
JN , c ∈ R

T , b ∈ R
2N−T ,

c ∈ R
T , p ∈ R. The peak p denotes the time domain magni-

tude peak. χ denotes the time domain signal vector. c is the

constellation variable vector containing the variable real parts

and imaginary parts used for minimizing the peak p. c are the

original values. b are the fixed real and imaginary parts. T
is the total number of variables. The IFFT is a real permuted

inverse discrete Fourier transform defined in Appendix.

3. OPTIMIZATION ALGORITHM

When solving the convex optimization, the logarithm-barrier-

IPM can be used to efficiently minimize the objective function

value. We need to introduce a barrier function as well as com-

pute a direction and a step-size, such that the variables can be

updated in each iteration to reduce barrier function value:

{
c = c + αv
p = p + αν

(6)

here, v ∈ R
T and ν ∈ R is the decent direction for c and p

respectively. Newton method is employed for its fast conver-

gence rate to compute the direction, and line-search is used

for providing the step-size [6].

3.1. Logarithms Barrier Function

A logarithm barrier function is needed in IPM method for that

the convex constraints can be converted into objective func-

tion, then various methods can be used to solve the uncon-

straint (or equality constraint) optimization. The logarithm

function is defined as follows:

f(c, p) = tp − log p −
JN∑
k=1

log(p2 − |χk|2) (7)

−
T∑

i=1

log[sign(ci)(ci − ci)]

here, t is the barrier parameter which determines the precision

of optimal to be within O(1/t). We also define the slacks in

time domain as:

uk = p2 − |χk|2 k = 1, 2, · · · , JN (8)

3.2. Search Direction

The standard (real-value) linear system of equation for New-

ton search direction is given by⎛
⎝ ∂2f

∂c2
∂2f
∂c∂p

( ∂2f
∂c∂p )

T
∂2f
∂p2

⎞
⎠ (

v
ν

)
=

(
∂f
∂c
∂f
∂p

)
(9)

for very large t,∂f/∂p is dominated by t component, then

∂f/∂p ≈ t. In order to abbreviate the calculation and since

line search is used to compute the step size, we can unify

the search direction of v in terms of ν, then Newton search

direction becomes⎛
⎝ ∂2f

∂c2
∂2f
∂c∂p

( ∂2f
∂c∂p )

T
∂2f
∂p2

⎞
⎠ (

v
−1

)
=

(
∂f
∂c
t

)
(10)

by implicitly setting t = ∂2f
∂p2 −( ∂2f

∂c∂p )T (∂2f
∂c2 )−1( ∂2f

∂c∂p ), solv-

ing the direction v is equavilent to solving linear equation:

∂2f

∂c2
v =

∂2f

∂c∂p
− ∂f

∂c
(11)

with ∂f/∂c, ∂2f/∂c∂p and ∂2f/∂c2 given by

∂f

∂c
= 2Qc[

x1

u1
,
x2

u2
, · · · ,

xJN

uJN
,
xJN+1

u1
, · · · ,

x2JN

uJN
]T

−[
1

c1 − c1
,

1
c2 − c2

, · · · ,
1

cT − cT
]T (12)

∂2f

∂c∂p
= −4pQc[

x1

u2
1

, · · · ,
xJN

u2
JN

,
xJN+1

u2
1

, · · · ,
x2JN

u2
JN

]T (13)

∂2f

∂c2
= QcBQT

c + D (14)
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For the definition of Qc, see appendix for reference. Since the

optimization is performing over convex function, B is sym-

metric positive definite, and can be written in this form:

B =

(
∂2f1

∂(�χ)2
∂2f1

∂(�χ)∂(�χ)

( ∂2f1
∂(�χ)∂(�χ) )

T ∂2f1
∂(�χ)2

)
(15)

∂2f1

∂(�χ)2
= 2diag(

u1 + 2�2χ1

u2
1

· · · uJN + 2�2χJN

u2
JN

) (16)

∂2f1

∂(�χ)2
= 2diag(

u1 + 2�2χ1

u2
1

· · · uJN + 2�2χJN

u2
JN

) (17)

∂2f1

∂(�χ)∂(�χ)
= 4diag(

�χ1�χ1

u2
1

· · · �χJN�χJN

u2
JN

) (18)

at this stage, we could compute QcBQT
c at the cost of

O(JN3). Some simplification has been done by [3], and

the complexity can be reduced to O(JN2 + JN log JN) by

making use of the diagonalization properties of DFT. D is a

diagonal matrix, written in real expansion form thus given by

D = diag(
1

(c1 − c1)2
1

(c2 − c2)2
· · · 1

(cT − cT )2
) (19)

The direct computation of v needs the inverse operation of
∂2f
∂c2 , which will be at the cost of O(N3). However, since

the Newton direction is not so accurate, we can use conjugate

gradient method to get the approximate result of v, which

can reduce complexity to O(M(N2 + 2N)), where M is the

iteration employed in conjugate gradient algorithm. The more

iteration is used (we take the iteration used to solve direction

v as inner iteration), the more accuracy is achieved.

3.3. Step Size

Let α be the step size used in the update iteration. Under

the constraint defined above, the step size must satisfy the

following conditions:

1) Since the p is update by p − α, the step size must satisfy:

0 ≤ αp ≤ p (20)

2) Time domain slacks must remain positive:

|χi + αiηi| ≤ p − αi, i = 1, 2, · · · , JN (21)

with η ∈ C
JN be the time-domain direction obtained by

oversampling IFFT:

y = [�η,�η] = QT
c v + QT

b b (22)

the maximum αi is given by:

αi =

{
−bi+

√
b2i +uiai

ai
if ai �= 0

ui

2bi
if ai = 0

(23)

where a, b ∈ R
JN are defined as

ai = |ηi|2 − 1 bi = �〈χi, ηi〉 + p (24)

3) The maximum αt such that the frequency domain constel-

lation points remains bounded is

βi =
ci − ci

vi
i = 1 2 · · ·T (25)

αt = minβi>0{β1, β2, · · · , βT } (26)

then, the maximum possible step size is calculated as

αmax = min{αp, α1, α2, · · · , αJN , αt} (27)

3.4. Initial Point Setting

The barrier function is defined on strictly feasible region, so

any strictly feasible points can be chosen. We use ACE-SGP

to provide the initial points setting. ACE-SGP is used until the

PAR reduction is small, then we transfer to IPM to further re-

duce PAR. The number of variables can be greatly reduced by

discarding those who remain their original positions. There is

a trade-off between the PAR reduction and the iteration em-

ployed. The more iteration is used (we take the iteration used

to reduce PAR as outer iteration), the larger PAR reduction is

achieved.

3.5. Algorithm Complexity

ACE-IPM reduces the complexity both in computation and

number of variables. In computation, the complexity of

EVM-IPM is about 4 IFFT plus solving N functions at the

cost O(N3 + 2N2 + 4JN log JN). While in ACE-IPM,

the complexity is approximately four IFFT plus the computa-

tion of equation (11), by making use of the conjugate gradient

method in the calculation, the total complexity can be reduced

to O(M(2N + N2) + 2N2 + 4JN log JN). In number of

variables aspect, by our real form formulation of convex op-

timization, we can discard those points who can not move,

which greatly reduce the number. Further more, ACE-IPM

can be combined with ACE-SGP to further reduce the number

of variables thus the complexity if we use ACE-SGP provid-

ing the initial points setting. Although EVM-IPM can also

employ ACE-SGP providing the initial setting, the number of

variables can not be reduced. Table I shows the number of

variables in EVM-IPM, ACE-IPM and SGP+ACE-IPM taken

average over 100000 OFDM symbols.

4. NUMERICAL RESULTS

We choose our simulation parameters as follows: An N=128

OFDM system with uniformly distributed unitary QAM16

symbol taken as the input signal is demonstrated. J = 4
is adopted as the oversampling rate. For clipping based al-

gorithms, clipping ratio is chosen for 3.3dB since which
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Table 1. QAM16 modulation scheme, number of variables

comparison

N=128 N=256 N=512 complex/real

EVM-IPM 128 256 512 complex

ACE-IPM 128 256 512 real

SGP+ACE-IPM 46 93 190 real

gives the best performance through simulation. We com-

pare the ACE-RCF, ACE-SGP, ACE-SGPOPT, EVM-IPM,

ACE-IPM and SGP+ACE-IPM(number), where the number

in the bracket indicates the number used in conjugate gradient

method. Though simulation, we find that 2 iteration for ACE-

SGP, 3 iterations for ACE-SGPOPT and EVM-IPM method

is enough (further iterations do not reduce PAR much). We

also find that 8 iteration for ACE-IPM is saturated.

Fig.2 shows the statistics of various algorithms. This

figure demonstrates the probability that PAR after PAR re-

duction algorithm exceeds a threshold (Papr0), we can see

that ACE-RCF reduces PAR very slowly in each iteration, al-

though the complexity is low. ACE-SGP and ACE-SGPOPT

both accelerate the convergence rate, and ACE-SGPOPT per-

forms better. We also see that EVM-IPM (-4.8dB) has nearly

the same performance with ACE-IPM (5 iter).
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Fig. 2. Average PAR vs. Iteration Number

Fig.3 compares the BER performance under 4 multi-path

AWGN channel. Previous IPM is based on EVM constraint,

which can not guarantee the minimum distance of constella-

tion points, so the BER degradation and the maximum EVM

will be a trade-off need to be determined. ACE-IPM guaran-

tees the minimum distance of constellation points, so the BER

degrades slightly, due to power rising.

5. CONCLUSION

In this paper, we derive an ACE-IPM based on ACE con-

straints. Our method outperforms other clipping based ACE
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Fig. 3. Average Power Rising vs. Iteration Number

algorithms with less computational complexity than previous

IPM, as well as keeps the BER performance. Further more,

our method can be combined with other ACE based algo-

rithms to further reduce the complexity, with a slight perfor-

mance degradation.

6. APPENDIX

The FFT and IFFT pairs are given as follows:{
x = QT

c c + QT
b b

c = Qcx − QcQT
b b (28)

here, c denotes a vector of frequency domain variables, b de-

notes a vector of frequency domain constants, and x denotes

a vector of time domain variables. Qc(Qb) are the columns

corresponding to the index of variables(constants) in real ex-

pended form unitary matrix.
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