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ABSTRACT

In this paper, we present an analytical analysis to predict the

Power Spectral Density (PSD) at the output of a nonlinear

Power Amplifier (PA). We focus on Offset Quadrature Phase

Shift Keying (OQPSK) waveform band-limited by a Square

Root Raised Cosine (SRRC) filter. This is one of the wave-

forms used in Wideband Code Division Multiple Access (W-

CDMA) wireless standard. We show that the PA output PSD

obtained by our analytical analysis matches well the simu-

lated PSD. Furthermore, we compare the PA output PSD of

QPSK and OQPSK waveforms as a function of the SRRC fil-

ter roll-off. We conclude that for small roll-off, both QPSK

and OQPSK experience almost the same level of spectral re-

growth. As the roll-off increases, OQPSK becomes less sen-

sitive to PA nonlinearity relative to QPSK.

Index Terms— Spectral analysis, Correlation, Power am-
plifier nonlinearities, Offset Quadrature Phase Shift Keying,

Interchannel interference .

1. INTRODUCTION

The Power Amplifier (PA) is the main energy consuming

component of current wireless communication systems [1].

In order to achieve higher power efficiency, the PA operat-

ing point is chosen near (or completely in) the saturation re-

gion [2]. However, the operation of a PA in this region distorts

the waveform of time-varying envelope signals, which causes

higher out-of-band power emissions. This phenomen is com-

monly known as Spectral Regrowth (SR) of side lobes.

SR due to nonlinear amplification is observed on the

Power Spectral Density (PSD) of the PA output signal. Sev-

eral studies have been carried out to predict analytically the

PA output PSD [3–5]. In [3], a closed-form expression of

the PA output PSD is obtained assuming Gaussian input sig-

nals. However, the Gaussian assumption is not valid for most

communication signals. Later on, Raich and Zhou have pre-

sented an analytical study to derive the PA output PSD of real

communication signals, with a special focus on Quadrature

Phase Shift Keying (QPSK) [4]. In [5], the same authors

compare the PA output PSD of both QPSK and Offset QPSK

(OQPSK). Nevertheless, since their analysis considers a half-

sine pulse shaping filter, the resulting OQPSK waveform has

a constant envelope. Therefore it does not experience any SR

at the output of a nonlinear PA. In fact, the analytical analysis

presented in both [4, 5] cannot be used to derive analytically

the PA output PSD of time-varying envelope OQPSK wave-

forms.

In current wireless standards like Wideband Code Divi-

sion Multiple Access (W-CDMA), OQPSK waveforms are

band-limited by a Square Root Raised Cosine (SRRC) filter.

This filter has better spectral efficiency property than a half-

sine filter. However, in this case, the waveform of an SRRC-

OQPSK has a time-varying envelope. Thus, it becomes inter-

esting to predict analytically the SR of SRRC-OQPSK wave-

form at the output of a nonlinear PA.

In this paper, we present an analytical analysis to derive

the PA output PSD of band-limited offset type modulated sig-

nals (in this paper, OQPSK signals) as a function of PA char-

acteristics and band-limiting filters. Our analysis can also be

used to predict the PA output PSD of non-offset type mod-

ulation schemes. As a study case, we focus on QPSK and

OQPSK modulation schemes since the choice between them

is always a difficult task.

The paper is organized as follows. In Section 2, the sys-

tem model is described. The analytical derivation of the PA

output PSD is presented in Section 3. In Section 4, we vali-

date our analytical approach and use it to compare PA output

PSD of both QPSK and OQPSK. Finaly, our conclusions are

drawn in Section 5.

2. SYSTEM MODEL

Let us consider the equivalent low-pass transmitter model rep-

resented in Figure 1. The in-phase and the quadrature sym-

bols are respectively denoted in and qn. The transmitted sym-

bols in and qn form two mutually independent random set I
and Q. Each set is independent identically distributed (i.i.d)
and has a symmetric distribution. Since the communication

channel is band-limited to some specified bandwidth W Hz,

the symbols in and qn are pulse shaped by filters with impulse

responses gI(t) and gQ(t) respectively. The specific offset
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Fig. 1. Equivalent low-pass transmitter model

between the in-phase and quadrature paths (characteristic of

OQPSK waveforms) is modeled through the quadrature filter

such that gQ(t) := gI(t−T/2), with T representing the sym-
bol period. Note that for QPSK waveform, both filters gI(t)
and gQ(t) are identical. The equivalent low pass signal at the
PA input, denoted x(t), is then given by:

x(t) = xI(t) + jxQ(t), (1)

with

xI(t) =

∞∑
n=−∞

in gI(t− nT ), (2a)

xQ(t) =

∞∑
n=−∞

qn gQ(t− nT ). (2b)

Next, the signal x(t) is amplified by a nonlinear PA. In this
study, the PA nonlinearity is described by a memoryless poly-

nomial model from [6]. The equivalent low-pass signal at the

PA output, denoted y(t), is given by:

y(t) = x(t)
K∑

k=0

a2k+1 |x(t)|2k, (3)

where coefficients a2k+1 are complex-valued. In the fol-

lowing, we limit our analysis to nonlinearity of 3rd or-

der (K = 1). However, our approach can be straightfor-
wardly extended to higher order nonlinearities.

3. DERIVATION OF THE PA OUTPUT PSD

The PSD of a stationary random signal is obtained by tak-

ing the Fourier transform of its autocorrelation function [7].

However, considering the system model described in Sec-

tion 2, the symbols in and qn are transmitted at discrete time

instants so that the resulting signals x(t) and y(t) are not sta-
tionary. In order to ensure their stationarity, we introduce in

(1) a random time shift T0 that is uniformely distributed be-

tween [0, T [. Therefore, the PA input signal becomes:

x̂(t) := x(t− T0). (4)

The stationary signal x̂(t) yields at the PA output a stationary
signal ŷ(t). The autocorrelation function of ŷ(t) is given by:

Rŷ(τ) = E[ŷ(t)ŷ∗(t + τ)], (5)

where E and ∗ represent the expectation and the conjugate
operators respectively. Replacing the stationarized expression

of (3) in (5), we get:

Ry(τ) = |a1|
2 E[x̂(t)x̂∗(t + τ)]︸ ︷︷ ︸

R11(τ)

+ a1a
∗

3 E[x̂(t)|x̂(t + τ)|2x̂∗(t + τ)]︸ ︷︷ ︸
R31(τ)

+ a3a
∗

1 E[x̂∗(t + τ)|x̂(t)|2x̂(t)]︸ ︷︷ ︸
R31(τ)

+ |a3|
2 E[|x̂(t)|2x̂(t)|x̂(t + τ)|2x̂∗(t + τ)]︸ ︷︷ ︸

R33(τ)

(6)

Next, taking into account on the one hand the uncorrelated-

ness (conditioned on T0) between x̂I(t) and x̂Q(t) and on the
other hand the zero-mean properties of both x̂I(t) and x̂Q(t)
(by symmetry), we obtain from (6):

R11(τ) = E[x̂I(t)x̂I(t + τ)] + E[x̂Q(t)x̂Q(t + τ)] (7a)

R13(τ) = E[x̂I(t)x̂
3
I(t + τ)] + E[x̂Q(t)x̂3

Q(t + τ)]

+ E[x̂I(t)x̂
2
Q(t + τ)x̂I(t + τ)]

+ E[x̂Q(t)x̂2
I(t + τ)x̂Q(t + τ)] (7b)

R31(τ) = E[x̂3
I(t)x̂I(t + τ)] + E[x̂3

Q(t)x̂Q(t + τ)]

+ E[x̂2
I(t)x̂Q(t)x̂Q(t + τ)]

+ E[x̂2
Q(t)x̂I(t)x̂I(t + τ)] (7c)

R33(τ) = E[x̂3
I(t)x̂

3
I(t + τ)] + E[x̂3

Q(t)x̂3
Q(t + τ)]

+ E[x̂3
I(t)x̂

2
Q(t)x̂I(t + τ)]

+ E[x̂3
Q(t)x̂2

I(t)x̂Q(t + τ)]

+ E[x̂2
I(t)x̂Q(t)x̂2

I(t + τ)x̂Q(t + τ)]

+ E[x̂2
Q(t)x̂I(t)x̂

2
Q(t + τ)x̂I (t + τ)]

+ E[x̂2
I(t)x̂Q(t)x̂3

Q(t + τ)]

+ E[x̂2
Q(t)x̂I(t)x̂

3
I(t + τ)]. (7d)

Note that x̂I(t) and x̂Q(t) are real-valued signals, thus we
may omit the conjugate operator on the second terms in the
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expectations. A general expression of the above different ex-

pectations is:

E(U,V,M,N) = E[x̂U
I (t)x̂V

I (t + τ)x̂M
Q (t)x̂N

Q (t + τ)], (8)

where (U + V ) and (M + N ) are even and belong to the
set {0, 2, 4, 6} for the 3rd order nonlinearity. Afterwards, we

substitute in (8) the signals x̂I(t) and x̂Q(t) by respectively
stationarized expressions (2a) and (2b). Then, exploiting the

mutual independence between in, qn and T0 random vari-

ables, we get:

E(U,V,M,N) =∑
n1

...
∑
nU

∑
nU+1

...
∑

nU+V

∑
m1

...
∑
mM

∑
mM+1

...
∑

mM+N

×E
[
in1

... inU
inU+1

... inU+V

]
(9a)

×E
[
qm1

... qmM
qmM+1

... qmM+N

]
(9b)

×E
[ U∏

i=1

gI(t− niT − T0)

U+V∏
i=U+1

gI(t + τ − niT − T0)

M∏
q=1

gQ(t−mqT − T0)

M+N∏
q=M+1

gQ(t + τ −mqT − T0)
]
.

(9c)

The summation indices nl andmk (with l = 1, ..., U + V and
k = 1, ..., M + N ) represent respectively different transmis-
sion instants of inl

and qmk
symbols. Each of them varies

from−∞ to∞.

In the following, we describe how the different factors

(9a), (9b) and (9c) are further developped.

Firstly, we use cumulants operators to evaluate higher or-

der statistics in (9a) and (9b) [8]. Let X represents the set
I or Q. The kth cumulant-to-moment conversion formula is

defined as [8]:

E[xn1
xn2

... xnk
] =

∑
Uz

p=1
Xp=X

z∏
p=1

cum(Xp), (10)

where the summation extends over all partitions of set X ,
meaning the unordered collection of non-interesecting non-

empty setsXp such that U
z
p=1Xp = X (cfr [8]). The notation

U represents the union operator while the variable z denotes
the number of non-empty sets in one given partition of setX .

Since I and Q have the i.i.d property, their kth-order cumu-

lant are multidimensional Dirac functions [8]. They can be

written as:

cum(xn1
, xn2

, ..., xnk
) = γk,x

k∏
l=2

δ(n1 − nl), (11)

with γk,x is the k
th order cumulant at lag 0. For instance, γ2,x

and γ4,x represent respectively the variance and kurtosis of x.
Secondly, in the factor (9c), by taking into account that the

random variable T0 is uniformely distributed over the interval

[0, T [, we obtain:

1

T

∫ T

0

U∏
i=1

gI(t− niT − T0)
U+V∏

i=U+1

gI(t + τ − niT − T0)

M∏
q=1

gQ(t−mqT − T0)

M+N∏
q=M+1

gQ(t + τ −mqT − T0)dT0.

(12)

At this point, we have all the necessary tools to derive the

analytical expression of each particular expectation described

by (8). As an example, forU = 2, V = 2, M = 1 andN = 1,
after mathematical manipulations we end up with the expres-

sion given in (13). The high order cross-correlation between

the band-limiting filters gI(t) and gQ(t) yields different auto-
correlation function for QPSK and OQPSK.

Once the complete expression of Ry(τ) has been derived
(this expression is too long to be given in this paper), the PSD

Sy(f) of y(t) is obtained by:

Sy(f) =

∫
∞

−∞

Ry(τ)e−j2πfτ dτ. (14)

4. VALIDATION OF THE ANALYTICAL ANALYSIS

4.1. PA configuration

We consider a nonlinear PA with an AM-AM characteristic

described by (3) in which the coefficients a2k+1 are real-

valued. We normalize both the PA gain a1 and the PA input

amplitude at 1-dB compression point A1−dB to 1. Using the

equation (15) from [2], the third-order coefficient a3 can be

calculated as follows:

a3 = −0.145
a1

A2
1dB

. (15)

E(2,2,1,1) =
γ4,Iγ2,Q

T

∑

n

∫
∞

−∞

g2
I (t)g2

I (t + τ)gQ(t − nT )gQ(t + τ − nT )dt

+
γ2
2,I

γ2,Q

T

∑

n1

∑

n2

∫
∞

−∞

g2
I (t)g2

I (t + τ − n1T )gQ(t − n2T )gQ(t + τ − n2T )dt

+ 2
γ2
2,I

γ2,Q

T

∑

n1

∑

n2

∫
∞

−∞

gI(t)gI (t + τ)gI (t− n1T )gI (t + τ − n1T )gQ(t− n2T )gQ(t + τ − n2T )dt (13)
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Fig. 2. The PA output PSD obtained from our analytical analysis matches
well the simulated PSD for both QPSK and OQPSK.
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Fig. 3. As the SRRC filter roll-off in-
creases, the ACPR difference between

OQPSK and QPSK grows.

The parameter a3 is then equal to -0.145. The Input BackOff

(IBO) is used as a parameter to define the PA operating point

relative to A1dB. The IBO has to be kept as low as possible to
achieve high power efficiency [2].

4.2. Results

As a first step, we validate the PA output PSD obtained from

our analytical analysis by comparing it to the PSD obtained

via simulations. Let us focus on two waveforms used by W-

CDMA wireless standards based on the QPSK and OQPSK

modulation schemes. The transmitted waveform is band-

limited using an SRRC filter. Figure 2 shows both the an-

alytical and simulated PSD for an PA IBO of 0 dB and an

SRRC filter roll-off equals to 0.3. We observe that the re-

sult of our analytical approach matches well the simulation

results for both QPSK and OQPSK. Thus, we can predict the

PA output PSD using our analytical method without running

time-consuming simulations. Next, as shown in Figure 3, we

use the obtained analytical PA output PSD to compare the SR

of both QPSK and OQPSK as a function of the SRRC roll-

off and PA IBO. Therefore, we characterize the SR using the

metric Adjacent Channel Power Ratio (ACPR), which is the

out-of-band power to the in-band power ratio. We note that

for small roll-off, both OQPSK and QPSK have almost the

same ACPR. As the roll-off increases, OQPSK experiences

less SR relative to QPSK. Furthermore, we observe that by

reducing the IBO from 0 dB to -5 dB (i.e higher power effi-

ciency), the ACPR increases for both QPSK and OQPSK by

almost 15 dB. However, the ACPR difference between QPSK

and OQPSK remains approximately the same.

5. CONCLUSION

The analytical analysis presented in this paper predicts cor-

rectly the PSD of band-limited QPSK and OQPSK signals at

the output of a nonlinear PA. Furthermore, using this analyt-

ical analysis, we compare the SR of both QPSK and OQPSK

as a function of the SRRC roll-off. We conclude that for small

roll-off, both QPSK and OQPSK experience almost the same

level of spectral regrowth. As the roll-off increases, OQPSK

becomes less sensitive to PA nonlinearity relative to QPSK.
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