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ABSTRACT
Nonparametric identification of baseband and passband com-

plex Volterra systems excited by communication inputs (PSK,

QAM and OFDM) is considered. Closed form expressions

are established using multidimensional orthogonal polyno-

mials and higher order statistics. First multidimensional or-

thogonal polynomials are used for baseband and passband

Volterra models driven by PSK and QAM inputs and closed

form expressions are derived. Baseband Volterra models ex-

cited by IID circular gaussian signals (OFDM) are identified

using crosscumulants. Performance is assessed by simula-

tions.

Index Terms— Communication system nonlinearities,

Volterra series, Identification, Higher order statistics,

Orthogonal functions

1. INTRODUCTION

Nonlinear behavior is observed in several digital communi-

cation systems including satellite, high speed digital trans-

mission over telephone channels, mobile cellular communi-

cations. The main source of nonlinear distortion is due to

the presence of a power amplifier sandwiched between two

linear filters. Power amplifiers in communication systems op-

erate near saturation due to limited power resource [1]. The

modulation scheme commonly employed in satellite systems

is PSK because it is less sensitive to nonlinearities due to the

constant envelope constellation [1]. On the other hand PSK

is less bandwidth efficient than other communication signals

like QAM, which are found in wireless applications.

A popular method to model nonlinearities in communication

systems is via Volterra models [2, 3, 4]. Input and output

signals are in general discrete complex valued sequences. A

passband system is described by a Volterra model of the form

yn =
P∑

p=1

Np∑
τ1

. . .

Np∑
τp

hp(τ1, . . . , τp)
p∏

i=1

zn−τi

(1)

The baseband Volterra model

yn =
�P−1

2 �∑
p=1

N2p+1∑
τ1

. . .

N2p+1∑
τ2p+1

h2p+1(τ1, . . . , τ2p+1)

·
p∏

i=1

z∗n−τi

2p+1∏
j=p+1

zn−τj
(2)

is employed in bandlimited communication channels. Note

that only odd-powers contribute to the output [1].

Identification of passband Volterra models with PSK input

is carried out in [2] via crosscorrelation analysis. Baseband

Volterra systems up to order 5 are considered in [4] by differ-

entiating the MSE with respect to various Volterra kernels for

both PSK and QAM. For OFDM signals the derived expres-

sions in [5] are extended for a 3rd order baseband Volterra in

[3].

Identification of passband and baseband Volterra systems ex-

cited by PSK and QAM is carried out by using an orthogonal

base. The Volterra kernels are first computed in the orthog-

onal basis and then converted to the original form. This al-

lows us to tackle passband systems excited by QAM of order

greater than 3 (where the kernels are not orthogonal to each

other). More efficient estimates are obtained for baseband

Volterra kernels of order greater than 3. Moreover closed

form expressions for the general 2p+1 order baseband Volterra

system with complex gaussian input are given, without having

to subtract the highest order nonlinearity each time to reduce

the order of the Volterra model as in [3] for a 3rd order model.

2. HIGHER ORDER STATISTICS OF QAM, PSK AND
OFDM SIGNALS

The communication signals we shall deal with are either cir-

cular or share some of the properties of circular signals. A

complex valued zero mean stochastic signal, zn, is called cir-

cular if it is invariant under any multiplication by a phase fac-

tor (rotation in complex plane) [6].

35891-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



The type of circularity we are concerned with is total circular-

ity. It implies that signals have sparse higher order moments.

It can be shown that μp,q = E{zp
nz∗q

n } = 0,∀p �= q.

In OFDM systems the incoming complex symbols (QAM or

PSK) are transformed to parallel data onto subcarriers through

an Inverse Fourier Transform and converted back from paral-

lel to serial. Due to the large number N of subchannels and

to the presence of the IFFT block the signal is approximately

complex normal with zero mean, [3]. It is easy to see that

complex gaussian signals are totally circular.

M-PSK signals are IID sequences with values in the alphabet

zn = r ·exp [j(2πm)/(M)] ,m = 0, . . . , M−1. PSK signals

are totally circular up to order M − 1 [2].

An M-QAM signal is of the form zn = an + jbn, where an

and bn are real IID sequences with finite values. an and bn

are jointly independent and both have symmetric distribution.

The higher order moments of a QAM signal are given by

E {zp
nz∗q

n } =

⎧⎪⎪⎨
⎪⎪⎩

E {|zn|p+q} if p = q,

E
{
|zn|min p,qz

|p−q|
n

}
if |p − q| mod 4 = 0,

0 otherwise.

Indeed

E {(a + jb)p} =

p
2∑

l=0

(
p

2l

)
jp−2lE

{
a2l

n

}
E

{
bp−2l
n

}

The above expectation is non-zero only when p is multiple of

4.

3. SYSTEM IDENTIFICATION USING
ORTHOGONAL BASES

An IID complex valued signal is orthogonalizable [7] and

there are various ways to construct associated orthogonal bases.

A common construction relies on one dimensional orthogonal

base and its separable extension to higher dimensions. One

dimensional polynomials constructed by the Gram-Schmidt

procedure is a notable case.

Multidimensional orthogonal polynomials are formed as prod-

ucts of one dimensional orthogonal polynomials (Pτi
(zi), where

τi is the degree of the polynomial and zi ≡ zn−i).

Q
(p)

i1 . . . i1︸ ︷︷ ︸
τ1

... ik . . . ik︸ ︷︷ ︸
τq

(zn) =
k∏

q=1

Pτq (ziq ) (3)

where τ1 + . . . + τk = p, zn = (zn−i1 , . . . , zn−ik
), the su-

perscript (p) indicates the degree of Q and all τ1, . . . , τm are

distinct.

The following two properties follow directly form the defini-

tion of multivariate orthogonal polynomials and the statistical

independence assumption.

1 z∗n . . . z∗p
n

zn znz∗n . . . znz∗p
n

z2
n z2

nz∗n . . . z2
nz∗p

n

...
...

. . .
...

zp+1
n zp+1

n z∗n . . . zp+1
n z∗p

n

Table 1. Ordering for baseband monomials

Property 1 Any two Q-polynomials of different degrees are
orthogonal: E

{
Q

(p)
i1...ik

(zn)Q(q)
j1...jk

(zn)
}

= 0 for p �= q.

We note that multivariate orthogonal polynomials of the same

degree are not necessary orthogonal. However, because they

are of product type the next property is true.

Property 2 Q-polynomials of the same degrees are orthogo-
nal if a is not a permutation of b:

E
{

Q
(p)
a (zn)Q(p)

b (zn)
}

= 0 for a �= perm(b).

Yasui [7] has demonstrated that there is a closed form solution

for the Fourier kernels kp(.) obtained when the Volterra sys-

tem driven by a real IID input is represented in an orthogonal

system. Indeed as a consequence of the multivariate Wiener-

Hopf equation [8] it holds

kp(i1, . . . , ik︸ ︷︷ ︸
τ1

, . . . , ik, . . . , ik︸ ︷︷ ︸
τk

) =
E {ynPτ1(zi1) . . . Pτk(zik )}

π(ik)‖Pτ1(zi1)‖ . . . ‖Pτk (zik)‖
(4)

w.l.o.g. the kernels are assumed to be symmetric hence π(in)
is the number of distinct permutations of the indices in.

The polynomials Pτi
(·) are constructed by the Gram-Schmidt

procedure on an ordered sequence of (linearly independent)

monomials. They have the property that they are orthogonal

to each other, < Pi(zn), Pj(zn) >= 0 for i �= j.

For the monomials (in one variable)
{
zi
n

}p

i=0
associated with

passband Volterra models, we introduce a degree ordering

scheme, 1 < zn < . . . < zp
n. For monomials in two variables

(zn, z∗n) related to baseband models we apply the graded lex-

icographic ordering of table 1, to all monomial of lower total

degree. Monomials of the same total degree are on the same

anti-diagonal.

3.1. Volterra Identification using orthogonal bases

The Fourier kernels for complex signals can be found by mak-

ing use of (4) and the hermitian inner product.

By definition the multivariate orthogonal polynomials, Q(.),
are orthogonal to all lower orders and to the same order. The
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passage to the original Volterra kernels from the Fourier co-

efficients is effected by the following expression

E
{
ynP ∗

τ1(zi1) . . . P ∗
τk

(zik)
}

=

π(in)hk(i1, . . . , ik)‖Pτ1(zi1)‖ . . . ‖Pτk (zik )‖

+

� P−k
2 �∑

v=1

E
{

Hk+2v(zn)Q
(∗p)
i1...ik

(zn)
}

(5)

The identification process starts by estimating the highest or-

der kernel which has no contribution from other kernels and

moving downwards.

The above expression gets further simplified when a PSK in-

put is used. PSK has constant amplitude and the phase is a

discrete periodic exponential signal of period M.

The complex Gram-Schmidt procedure in its determinant form

is Pk(zn) = detMk/E{detMk−1} where

Mk =

⎡
⎢⎢⎢⎢⎣

zk
n . . . zn 1

E
{

zk
nz

∗(k−1)
n

}
. . . E

{
znz

∗(k−1)
n

}
E

{
z
∗(k−1)
n

}
.
.
.

. . .
.
.
.

.

.

.

E
{
zk
n

}
. . . E {zn} 1

⎤
⎥⎥⎥⎥⎦

Using the discussion of section 2 all non-diagonal elements

are zero. Therefore Pk(zn) = zk
n and expression (5) reduces

to the one given in [2].

For unit energy PSK |zn|2 = 1, baseband Volterra is com-

posed of 2p + 1 copies of the input (p + 1 unconjugate and p
conjugate terms). Thus it is obvious from (2) that some ker-

nels will degenerate into lower orders [1]. The non-degenerate

baseband kernels for PSK remain orthogonal to each other.

Next we consider QAM signals. The Gram-Schmidt determi-

nants in this case are initially sparse and progressively get

more dense. Thus orthogonal polynomials are recursively

computed by the Gram-Schmidt procedure.

Example 1 - Third order baseband nonlinear system with QAM
input:
We derive the sequence of monomials associated with a 3rd

order baseband model, according to table 1, and apply the

Gram-Schmidt orthogonalization.

{
P0, P1(zn), P1(z∗n), P2(z2

n), P2(|zn|2), P3(|zn|2zn)
}

={
1, zn, z∗n, z2

n, |zn|2 − μ1,1, |zn|2zn − μ2,2

μ1,1
zn

}

The multivariate orthogonal polynomials are constructed as

separable extensions of the one dimensional polynomials.

{
Q

(1)
i (zn)Q(3)

ijk∗(zn), Q(3)
iii∗(zn), Q(3)

iik∗(zn), Q(3)
iji∗(zn)

}
={

zi, zizjz
∗
k, |zi|2zi − μ2,2

μ1,1
zi, z

2
i zk, zizk − μ1,1zk

}

The cubic kernel, h3(.), is orthogonal to all lower order Volterra

kernels and it is evaluated by:

h3(i, j, k) =
E

{
ynQ

(3)
i∗j∗k(zn)

}
‖Q(3)

ijk∗‖

In the case of the linear kernel, the contribution of the cubic

kernel (call it C) has to be removed, hence:

h1(i) =
E

{
ynQ

(1)
i∗ (zn)

}
− C

‖Q(1)
i ‖

, C =

E
{
|zi|2ziQ

(1)
i∗ (zn)

}
h3(i, i, i) + E

{
|zj |2ziQ

(1)
i∗ (zn)

} ∑
i�=j

h3(i, j, j)

If the estimated Q-polynomials are replaced in the above for-

mulas, the resulting kernel estimates are identical to the ones

obtained in [4].

4. BASEBAND VOLTERRA IDENTIFICATION FOR
OFDM INPUTS

If the input is complex white gaussian the relevant orthogonal

polynomials are the Hermite polynomials and the correspond-

ing multivariate orthogonal polynomials are the multivariate

Hermite polynomials.

The method described above is applicable. Alternately cumu-

lant operators can be used as in [5]. Expressions invoking cu-

mulants are much simpler because cumulants are equivalent

to multiples of Hermite moments.

Theorem 1 Consider the baseband Volterra model (2). The
crosscumulant of y(n) with (p + 1) conjugate copies of the
input and p unconjugate copies of the input is zero if 2p+1 >
P (where P is the order of the nonlinearity). For 0 ≤ 2p+1 ≤
P , expressions (6),(7) hold.

Detailed proofs of the above remarks are given in [9].

Example 2 - Third order baseband nonlinear system with OFDM
input:
We first determine the third-order kernel h3. The crosscumu-

lant of y with two conjugate copies of x and one unconjugate

copy of x, is

cumyxxx{τ∗
1 , τ∗

2 , τ3} = (1 + 1)!(1)!A2·1+1h3(τ1, τ2, τ3)

Next, we take the crosscumulant of y with one conjugate

copy of x

cumyx(τ∗
1 ) =Ah1(τ1) + 2A2

∑
k1

h3(τ1, k1, k1)
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cum{yn, xn−τ1 , . . . , xn−τp , x∗
n−τp+1

, . . . , x∗
n−τ2p+1

} = p!(p + 1)!A2p+1h2p+1(τ1, . . . , τ2p+1)

+

� P−2p−1
2 �∑

v=1

(p + 1 + v)!(p + v)!

v!
A2p+1+v

∑
k1

· · ·
∑
kv

h2p+1+2v(τ1, .., τ2p+1, k1, k1, .., kv , kv) (6)

cum{y(n), x∗(n − τ1)} = Ah1(τ1) +

� P−2p−1
2 �∑

v=1

(1 + v)!Av+1
∑
k1

· · ·
∑
kv

h2v+1(τ1, k1, k1, .., kv , kv) (7)

5. SIMULATIONS

The proposed algorithms in section 3.1 are tested by simu-

lations on a baseband satellite communication channel. The

power amplifier is sandwiched between the transmitter and

receiver filter. The filter coefficients used in this example are:

Tx = [0.8, 0.1] and Rx = [0.9, 0.2, 0.1]. For the power am-

plifier the Saleh model is used, which is a good analytical ap-

proximation for Travelling Wave Tube amplifiers. The Nor-

malized Mean Square Error of the output was used to evaluate

the performance of the derived algorithms through different

SNR levels.
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SNR (dB)

N
M

S
E

 (d
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(a) 32-QAM
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Redfern et al.
our approach

(b) OFDM input

Fig. 1. NMSE versus SNR for a 3rd order baseband Volterra

For the baseband OFDM case the algorithm was tested under

the same channel as in [3] by an IID circular gaussian se-

quence of 16384 samples. Both techniques perform equally

well. The proposed algorithm requires N1N3 additions and

2N1 multiplications while the method of [3] calls for N3
3 ad-

ditions and N3
3 + N1 multiplications.

The performance of the derived algorithms depends on the

estimates of the higher order moments. The estimates are cal-

culated when AWGN noise is present, which also affects the

accuracy of the higher order moment estimates.

6. CONCLUSIONS

Identification of Volterra systems excited by QAM, PSK and

OFDM has been presented. The use of orthogonal bases pro-

vides a unification of existing identification results that are

based on higher order statistics. In particular it is applicable

to the extension of a 3rd order passband Volterra identifica-

tion with QAM signal; it allows the treatment of PSK inputs

not only for passband but also for baseband identification and

finally it enables the extension of [4] to higher order models.

In the case of OFDM input the nonparametric identification

of general nonlinear input-output systems related to baseband

Volterra expansions has been considered. Time domain closed

form expressions for the determination of the kernels of arbi-

trary order have been derived. Forthcoming research is fo-

cused on blind identification techniques for nonlinear com-

munication channels.
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