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Abstract– The FFT process is an operation that could be 
performed through different stages. In each stage, the butterfly 
operation is computed in which the accessed data is multiplied by 
certain W , added or subtracted and finally it is stored or held for 
further processing. This process is repeated to each stage until the 
final stage where the processed data is driven to the output. In this 
paper, an appropriate indexing or mapping schemes between the 
input data and the coefficient multipliers throughout the different 
stages are yield to a computation single stage by collapsing all stages 
into a computation single stage. The result is a reduction of 
communication load and arithmetic operations.  
Index Terms– Discrete Fourier transforms, Frequency domain analysis, 
Parallel processing 

1. Introduction 

The Discrete Fourier Transform (DFT) is a fundamental digital 
signal-processing algorithm used in many applications, including 
frequency analysis and frequency domain processing, such as 
speech compression, meanwhile the frequency domain 
processing allows for the efficient computation of the 
convolution integral (for linear filtering) and of the correlation 
integral (for correlation analysis), and in wireless communication 
system based on Orthogonal frequency division multiplex 
(OFDM), which the FFT is an operator key [4].  

The definition of DFT is shown in equation (1), x[n] is the 
input sequence, X[k] is the output sequence, N is the transform 
length and wN is the Nth root of unity (wN = e-j2 /N). Both x[n] and 
X[k] are complex valued sequences.  
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DFT is the decomposition of a sampled signal in terms of 
sinusoidal (complex exponential) components, and because of its 
computational requirements, the DFT algorithm, which requires 
N2 complex value multiplication plus a smaller number of 
operations to complete a complex value addition or subtraction, 
usually is not used for real time signal processing. Several 
efficient methods have been developed to compute the DFT, 
“Cooley and Tukey presented their approach showing a number 
of multiplications required to compute the DFT of a sequence 
may be considerably reduced to Nlog2N by using one of the fast 
Fourier transform (FFT) algorithms [1]”. One of the bottlenecks 
in most applications, where high performance is required, is the 
FFT/IFFT processor.  

In this paper, the structure of the one stage algorithm for the 
dedicated FFT will be elaborated. The main objective of this 
proposal is reduction in communication load, reduction in 
computation and particularly reduction in the number of 
multiplications. The advantage of appropriately breaking the 
DFT in terms of its partial DFTs is that the number of 
multiplications and the number of stages may be controlled. The 
number of stages often corresponds to the amount of global 

communication and/or memory accesses in implementation, and 
thus, reduction in the number of stages is beneficial. Minimizing 
the computational complexity may be done at the algorithmic 
level of the design process, where the minimization of operations 
depends on the number representation in the implementation. 
Minimizing the communication load is achieved on the 
architecture level, where issues like possibility to power down 
Despite of the Cooley-Tukey’s clear definition stating that the 
DFT is a combination of its partial DFTs, researchers used to 
express the DFT in terms of its partial DFTs as: 
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As a result the mathematical representation of the DFT into its 
partial DFTs is not well defined yet. The problem resides in 
finding the mathematical model of the combination phase, in 
which the concept of butterfly computation should be well 
structured in order to obtain the right mathematical model. 

The paper is organized as follows; in Section 2 a butterfly 
operation is defined. Section 3 is devoted to describe in details 
the proposed FFT method and the modified radix-r FFT. The 
implementation aspects are given to Section 4, while Section 5 
draws conclusions. 

2. The Butterfly Processing Element 
The basic operation of a radix-r BPE is the so-called butterfly 

in which r inputs are combined to give the r outputs via the 
operation [2]:   

rX B x (3) 

where [0],  [1], ,  [ 1] Tx x x rx  is the input BPE vector and 

[0],  [1], ,  [ 1] TX X X rX  is the output BPE vector. Br is 
the butterfly matrix, dim(Br)=r r, which can be expressed as  

r
r N rB W T  (4) 

for the decimation in frequency (DIF) process, and 
r

r r NB T W  (5) 
for the decimation in time (DIT) process. In both cases, DIT and 
DIF, the twiddle factor matrix, NW , is a diagonal matrix defined 

by 2 ( -1)diag 1, , , ,p p r p
N N N NW W WW  with 

0,1, , log 1rp N  and Tr is the adder-tree in the butterfly 
structure
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where dim(Tr)=r r . We defined 
,r l m

T  the element of the lth

line and mth column of the matrix Tr.
We rewrite (6) as  

,
N

lmN r
r Nl m

WT , (7) 

with l=0,1,…,r-1, m=0,1,…,r-1 and x
N

 represents the 
operation x modulo N.

If we pay attention to the elements of the adder-tree matrix Tr

and to the elements of the twiddle matrix NW , we could notice 
that both of them contain twiddle factors. So, by controlling the 
variation of the twiddle factor during the calculation of a 
complete FFT, results in incorporating the twiddle factors and 
the adder matrix in a single-stage of calculation.  

According to equation (3), Br is the product of the twiddle 
factor matrix NW  and the adder-tree matrix Tr.
By defining ( , , )N u v sW  the set of the twiddle factor matrix r

NW  as: 

( , , ) (0, , ) (1, , ) ( -1, , )diag , , ,N u v s N v s N v s N r v sW W WW , (8) 
with the indices 0,1, , 1u r , 0,1, , 1v V , and 

0,1, , 1s S  where r is the radix-r, V is the number of words, 
V N r , and S is the number of stages (or iteration), 

logrS N . From (8), we can define all matrix elements as (lth

line, mth column) 

, ( , , )
for

0 elsewhere

s s
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W l mW , (9) 

l=0,1,…,r-1, m=0,1,…,r-1 and x  defined the integer part 
operator of x. Therefore, the modified radix-r butterfly 
computation Br  will be expressed: 

( , , )r N u v s rB W T , (10) 
that we can rewrite as  

/
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As a result, the operation of a radix-r for the DIF FFT is 
formulated by, the column vector: 

( , , )  u v s r DIFX B x ,
where the lth output is 

-1 /
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With the same reasoning as above, the operation of a radix-r DIT 
FFT can be derived.  

The conceptual key to the modified radix-r FFT butterfly is the 
formulation of the radix-r as composed butterflies with identical 
structures and a systematic means of accessing the corresponding 
multiplier coefficients. This enables the design of processing 
element (PE), called Butterfly PE (BPE) shown in Fig. 1, to 
maximize the data throughput, we can utilize r or r-1 complex 
multipliers in parallel to implement each of the radix-r butterfly 
computations.   

Fig. 2 shows the radix-r BPE for one element output l. For a 
single processor environment, this type of BPE would result in 
decrease in time delay for the complete FFT by a factor of O(r).  
The modified radix-r FFT butterfly based on the proposed BPEs 

presents a useful aspect by applying parallel multiprocessing 
environments as shown in Fig. 3 [3].

3. DFT Factorization 
For a given r×r square matrix Tr and for a given column 

vector x[n] of size N, we define a special product expressed with 
the operator , ,  (product of radix-  performed on  column 
vector of size ) by the following operation, where the  column 
vectors are subsets of x[n] picked up at a stride 
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for 0,1,..., 1v N r  and j0=0,1,…,r-1; 

[0], [1], , [( / ) 1] TX X X N rX is a column vector. We can 
generalized to a r column vectors of length  where  is a 
power of r in which the lth element X[l] of the vth product X(v)[l] is 
labeled as 
 l(v) = j0 +v (16) 
for v=0,1,..., -1. Special properties are shown in Appendix.  

Based on our proposition in the previous section, Eq. (1) for 
the first factorization may be rewritten as 

,0 ( , )r l v s
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B
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( , )[ ]v sX l
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 a) b) 
Fig. 1  BPE for FFT Radix-r (a) using Br in (11) and the symbol (b). 
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Fig. 2  Maximize the data throughput using r BPEs in parallel. 
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for v0=0,1,…, (N/r)-1, and n=0,1,…,N-1. Since  

/
rnk nk

N N rW W  (18) 
the Eq. (17) becomes 
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which for simplicity may be expressed as 
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where for simplification in notation the column vector in (20) is 
set equal to: 
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for j0=0,1,…,r-1, v0=0,1,…,(N/r)-1 and 
0 0 0 0( 1)0diag , , ,j v v r v

N N N NW W WW .
For the second factorization, (31) is factored as follow: 
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  (22) 
which could be simplified as equation (23), for j0=0,…,r-1,
j1=0,…,r-1, v1=0,1,…,N/r2-1, and 

1 1 1 1( 1)0diag , , ,rj v rv r r v
N N N NW W WW . If the factorization 

process will continue till we get rs transform of size r, then 
Eq. (1) will be expressed as Eq. (24) and 

( 1)0diag , , ,
s s s

s s s sr j v r v r r v
N N N NW W WW .

In DSP Layman language, the factorization of an FFT can be 
interpreted as dataflow diagram (or Signal Flow Graph), which 
depicts the arithmetic operations and their dependencies. To be 
noted that the dataflow diagram is read from left to right we will 
obtain the decimation in frequency algorithm and where  in 
Eq. (16) is equal to r(-1), meanwhile if the dataflow diagram is 
read from right to left we will obtain the decimation in time 
algorithm and where  in (16) is equal to r .

4. The One Stage FFT 
Eq. (30) could be developed according to our special product, 

1
0 0 1 1 1

22 2

-1
2

1 0, , / /, , /
0

[ ]  , , [ ]
v

j v rj v nv
r N r Nr r N r N rr r N r

n

X k W col T W col x r n rj j wT  (23) 

1
0,1, ,log 2 1

1
1

0 /, ,
0 0,1, , / 1

[ ] , [ ... ]
ss

s s s
ss

s
s N sr s

v
s sr j v nv

r N s N rr r k
n v N r

X k W col x r n r j j WT  (24)

 a) 

1 0( ,0, , , , )S
r l j j v

B

01( ,.., )[0]
Sj jx

( )[ ]vX l

01( ,.., )[1]
Sj jx

01( ,.., )[ 1]
Sj jx r

1 0( ,1, , , , )S
r l j j v

B

1 0( , 1, , , , )S
r l r j j v

B

 b) 

( )[ ]vX l
1 0( , , , , )S

r l j j v
B

Fig. 3  Radix-r OSPE (a) using Br DIF in (11) and the symbol (b). 
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( , , ) , and knowing that 23 24
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therefore, (21) could be simplified as: 
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where 1 2

1 2 1 0
S S

S SJ r J r j rj j  and for 
0,1, , 1, [0, 1]sj r s S , l=0,1,…,r-1, v=0,1,...,(N/r)-1, 

S=logrN. The lth output of X  is stored at the address memory 
location given by the write address generator (WAG): 

WAG l N r v . (28) 
Finally, we can represent the execution of FFT in one stage (or 
phase), by adopting the following notations: 

01

1
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S
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Fig. 3 illustrates the radix-r one stage processing element 
(OSPE) in which r multipliers are implemented in parallel and 
executed in one cycle. To increase the data throughput, we can 
easily increase the degree of parallelism as shown in Fig. 4. All 
FFT results from Fig. 4 are obtained in one clock cycle to satisfy 
high sustained throughput applications. The data,

0, , ..., ,sr l m j j v
B ,

is localized at each multiplier and use an address generator based 
on a simple digital counters.  

The one stage FFT structure is suitable to customize the 
hardware implementation take into account the VLSI constraints 
such as data throughput, area, and power consumption. The 
localized communication, regularity and recursiveness of 
equations make the flexibility to satisfy a large application 
domains. The proposed structure gives us the ability to divide a 
process into serial and parallel portions (or pure parallel 
portions) where the parallel parts are executed concurrently.  

Tables I to III show the evaluation for adder matrix [4] and 
proposed FFT (Fig. 2 and 4). Table II shows more clock cycles 
than Table 1 but with a lower number of hardware resources by 
applying a time multiplex implementation of the BPE (Fig. 2). 
However, we drastically reduce the clock cycles using r OSPE in 
parallel (Fig. 4) as shown in Table III.  

5. Conclusion 
Finally this paper has presented an efficient way of 

implementing the FFT process by mean of the one iteration 
radix-r kernel where a serial parallel model and a pure parallel 
model have been represented. Also, it has been argued that a 
reduction in the chip size, a reduction of its power consumption 
and an increase of the performance of the system could be 
achieved.  
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Appendix 
Properties of special product , ,

ˆ
r r
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Fig. 4  Maximize the data throughput using r OSPE in parallel. 

Table I Number of cycles need to execute a 4096-points FFT for different 
radices by factoring the adder matrix. 
Cycles Requirements Radix – 2 Radix – 4 Radix – 8 
Phases 2 4 7 
Memory accesses 71680 17408 5632 
Complex multiplication 24576 5120 3072 
Complex addition 24576 12288 6144 

Table II Number of cycles needs to execute a 4096-points FFT for 
different radices by implementing r BPEs in parallel (Fig. 2). 

Cycles Requirements Radix – 8 Radix – 16 
Phases 4 3 
Memory accesses 3072 1536 
Complex multiplication 1536 512 
Complex addition 2048 768 

Table III Number of cycles needs to execute a 4096-points FFT for 
different radices by using r OSPE (Fig. 4). 

Cycles Requirements Radix – 8 Radix – 16 
Phases 1 1 
Memory accesses 1024 512 
Complex multiplication 512 16 
Complex addition 512 16 
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