
The Radix-r One Stage FFT Kernel Computation
Marwan A. Jaber and Daniel Massicotte

Université du Québec à Trois-Rivières, Electrical and Computer Engineering Department
Laboratory of Signal and System Integrations, www.uqtr.ca/lssi

C.P. 500, Trois-Rivières, Québec, Canada, G9A 5H7
{marwan.jaber, daniel.massicotte}@uqtr.ca

Abstract– The FFT process is an operation that could be
performed through different stages. In each stage, the butterfly
operation is computed in which the accessed data is multiplied by
certain W , added or subtracted and finally it is stored or held for
further processing. This process is repeated to each stage until the
final stage where the processed data is driven to the output. In this
paper, an appropriate indexing or mapping schemes between the
input data and the coefficient multipliers throughout the different
stages are yield to a computation single stage by collapsing all stages
into a computation single stage. The result is a reduction of
communication load and arithmetic operations.
Index Terms– Discrete Fourier transforms, Frequency domain analysis,
Parallel processing

1. Introduction

The Discrete Fourier Transform (DFT) is a fundamental digital
signal-processing algorithm used in many applications, including
frequency analysis and frequency domain processing, such as
speech compression, meanwhile the frequency domain
processing allows for the efficient computation of the
convolution integral (for linear filtering) and of the correlation
integral (for correlation analysis), and in wireless communication
system based on Orthogonal frequency division multiplex
(OFDM), which the FFT is an operator key [4].

The definition of DFT is shown in equation (1), x[n] is the
input sequence, X[k] is the output sequence, N is the transform
length and wN is the Nth root of unity (wN = e-j2 /N). Both x[n] and
X[k] are complex valued sequences.

-1

0
[] [] , [0, -1]

N
nk

N
n

X k x n W k N (1)

DFT is the decomposition of a sampled signal in terms of
sinusoidal (complex exponential) components, and because of its
computational requirements, the DFT algorithm, which requires
N2 complex value multiplication plus a smaller number of
operations to complete a complex value addition or subtraction,
usually is not used for real time signal processing. Several
efficient methods have been developed to compute the DFT,
“Cooley and Tukey presented their approach showing a number
of multiplications required to compute the DFT of a sequence
may be considerably reduced to Nlog2N by using one of the fast
Fourier transform (FFT) algorithms [1]”. One of the bottlenecks
in most applications, where high performance is required, is the
FFT/IFFT processor.

In this paper, the structure of the one stage algorithm for the
dedicated FFT will be elaborated. The main objective of this
proposal is reduction in communication load, reduction in
computation and particularly reduction in the number of
multiplications. The advantage of appropriately breaking the
DFT in terms of its partial DFTs is that the number of
multiplications and the number of stages may be controlled. The
number of stages often corresponds to the amount of global

communication and/or memory accesses in implementation, and
thus, reduction in the number of stages is beneficial. Minimizing
the computational complexity may be done at the algorithmic
level of the design process, where the minimization of operations
depends on the number representation in the implementation.
Minimizing the communication load is achieved on the
architecture level, where issues like possibility to power down
Despite of the Cooley-Tukey’s clear definition stating that the
DFT is a combination of its partial DFTs, researchers used to
express the DFT in terms of its partial DFTs as:

() 1 () 1
(1)

0 0
[] [] [(1)]

N r N r
rn r krnk

n n

X k x rn w x rn r w (2)

As a result the mathematical representation of the DFT into its
partial DFTs is not well defined yet. The problem resides in
finding the mathematical model of the combination phase, in
which the concept of butterfly computation should be well
structured in order to obtain the right mathematical model.

The paper is organized as follows; in Section 2 a butterfly
operation is defined. Section 3 is devoted to describe in details
the proposed FFT method and the modified radix-r FFT. The
implementation aspects are given to Section 4, while Section 5
draws conclusions.

2. The Butterfly Processing Element
The basic operation of a radix-r BPE is the so-called butterfly

in which r inputs are combined to give the r outputs via the
operation [2]:

rX B x (3)

where [0], [1], , [1] Tx x x rx is the input BPE vector and

[0], [1], , [1] TX X X rX is the output BPE vector. Br is
the butterfly matrix, dim(Br)=r r, which can be expressed as

r
r N rB W T (4)

for the decimation in frequency (DIF) process, and
r

r r NB T W (5)
for the decimation in time (DIT) process. In both cases, DIT and
DIF, the twiddle factor matrix, NW , is a diagonal matrix defined

by 2 (-1)diag 1, , , ,p p r p
N N N NW W WW with

0,1, , log 1rp N and Tr is the adder-tree in the butterfly
structure

2

0 0 0 0

0 / 2 / (1) /

0 2 / 4 / 2(1) /

0 (1) / 2(1) / (1) /

N N N N
N r N r r N r

N N N N
N r N r r N r

N N N Nr

r N r r N r r N r
N N N N

W W W W
W W W W
W W W W

W W W W

T (6)

35851-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

where dim(Tr)=r r . We defined
,r l m

T the element of the lth

line and mth column of the matrix Tr.
We rewrite (6) as

,
N

lmN r
r Nl m

WT , (7)

with l=0,1,…,r-1, m=0,1,…,r-1 and x
N

 represents the
operation x modulo N.

If we pay attention to the elements of the adder-tree matrix Tr

and to the elements of the twiddle matrix NW , we could notice
that both of them contain twiddle factors. So, by controlling the
variation of the twiddle factor during the calculation of a
complete FFT, results in incorporating the twiddle factors and
the adder matrix in a single-stage of calculation.

According to equation (3), Br is the product of the twiddle
factor matrix NW and the adder-tree matrix Tr.
By defining (, ,)N u v sW the set of the twiddle factor matrix r

NW as:

(, ,) (0, ,) (1, ,) (-1, ,)diag , , ,N u v s N v s N v s N r v sW W WW , (8)
with the indices 0,1, , 1u r , 0,1, , 1v V , and

0,1, , 1s S where r is the radix-r, V is the number of words,
V N r , and S is the number of stages (or iteration),

logrS N . From (8), we can define all matrix elements as (lth

line, mth column)

, (, ,)
for

0 elsewhere

s s
N

v u l u

NN l m u v s
W l mW , (9)

l=0,1,…,r-1, m=0,1,…,r-1 and x defined the integer part
operator of x. Therefore, the modified radix-r butterfly
computation Br will be expressed:

(, ,)r N u v s rB W T , (10)
that we can rewrite as

/

, (,)

s s
N

lm N r v r l r

r Nl m v s
WB (11)

As a result, the operation of a radix-r for the DIF FFT is
formulated by, the column vector:

(, ,) u v s r DIFX B x ,
where the lth output is

-1 /

(,) (,)
0

[] []
s s

N
r lmN r k r l r

v s v s N
m

X l x m W . (12)

With the same reasoning as above, the operation of a radix-r DIT
FFT can be derived.

The conceptual key to the modified radix-r FFT butterfly is the
formulation of the radix-r as composed butterflies with identical
structures and a systematic means of accessing the corresponding
multiplier coefficients. This enables the design of processing
element (PE), called Butterfly PE (BPE) shown in Fig. 1, to
maximize the data throughput, we can utilize r or r-1 complex
multipliers in parallel to implement each of the radix-r butterfly
computations.

Fig. 2 shows the radix-r BPE for one element output l. For a
single processor environment, this type of BPE would result in
decrease in time delay for the complete FFT by a factor of O(r).
The modified radix-r FFT butterfly based on the proposed BPEs

presents a useful aspect by applying parallel multiprocessing
environments as shown in Fig. 3 [3].

3. DFT Factorization
For a given r×r square matrix Tr and for a given column

vector x[n] of size N, we define a special product expressed with
the operator , , (product of radix- performed on column
vector of size) by the following operation, where the column
vectors are subsets of x[n] picked up at a stride

, , /

[] []
[1] [1]ˆ[] ,

[(1)] [(1)]

r rr r N r

x rn x rn
x rn x rn

X k

x rn r x rn r

T T (13)

0

0,0 0,1 0, 1

1,0 1,1 1, 1
0 0,1, , 1

1,0 1,1 1, 1

[] []

r

r
j r

r r r r

T T T
T T T

X k col x rn j

T T T

 (14)

0
0

1

0,
0

[] []
r

v l j
j

X l x rn jT (15)

for 0,1,..., 1v N r and j0=0,1,…,r-1;

[0], [1], , [(/) 1] TX X X N rX is a column vector. We can
generalized to a r column vectors of length where is a
power of r in which the lth element X[l] of the vth product X(v)[l] is
labeled as
 l(v) = j0 +v (16)
for v=0,1,..., -1. Special properties are shown in Appendix.

Based on our proposition in the previous section, Eq. (1) for
the first factorization may be rewritten as

,0 (,)r l v s
B

(,)[0]v sx

,1 (,)r l v s
B

, 1 (,)r l r v s
B

(,)[]v sX l

(,)[1]v sx

(,)[1]v sx r (,)r l v s
B (,)[]v sX l

(,)v sx

 a) b)
Fig. 1 BPE for FFT Radix-r (a) using Br in (11) and the symbol (b).

0 (,)r v s
B

(,)[0]v sx

(,)[1]v sx

(,) [1]v sx r

1 (,)r v s
B

1 (,)r r v s
B

(,)[0]v sX

(,)[1]v sX

(,)[1]v sX r

Fig. 2 Maximize the data throughput using r BPEs in parallel.

3586

0

0

0

/ 1

0

/ 1
11

0, , /
0

/ 1
1

0

[]

[1]
[] [] ,

[(1)]

N r
rnv

N
n

N r
rn vN

kn N
N r nr r N r

n

N r
rn r v

N
n

x rn W

x rn W
X k x n W T

x rn r W

 (17)
for v0=0,1,…, (N/r)-1, and n=0,1,…,N-1. Since

/
rnk nk

N N rW W (18)
the Eq. (17) becomes

0

0 0

0

/ 1

/
0

/ 1

/
0, , /

/ 1
1

/
0

[]

[1]
[] ,

[1]

N r
nv
N r

n

N r
v nv

N N r
r nr r N r

N r
r kv nv

N N r
n

x rn w

W x rn W
X k T

W x rn r W

 (19)

which for simplicity may be expressed as

0 1 0

/ -1

0 /, , /
0

[] , []
N r

j v nv
r N N rr r N r

n

X k W col x rn j WT (20)

where for simplification in notation the column vector in (20) is
set equal to:

0

0 0
0

0 0

/ -1

/
0

/ -1
/ -1

/
0 /0

0

/ -1
-1

/
0

[]

[1]
[]

[1]

N r
nv
N r

n

N r
N rv nv

nvN N r
N rn

n

N r
r v nv

N N r
n

x rn w

w x rn w
col x rn j W

w x rn r w

 (21)

for j0=0,1,…,r-1, v0=0,1,…,(N/r)-1 and
0 0 0 0(1)0diag , , ,j v v r v

N N N NW W WW .
For the second factorization, (31) is factored as follow:

2

1
2

2
2

2

1 1
2

1
2

0 0 2
2

1

/
0

, ,
1

1

/
0

/

, ,
, ,

[]

,

[(-1)]

[1]

,
[] ,

N

r
nv

N r
n

rNr r
Nr
r

r r v nv
N N r

n

nv
N r

n

rj v Nr rr NN rr r
r

x r rn W

W x r rn r W

x r rn W

X k W

T

T
T

2

2

1 1
2

2

1
2

2
2

2

1 1
2

1

0

1

1 v

/
0

1

/
0

, ,

1

/
0

[(-1) 1]

[(1)]

,

[-1 (1)]

N

r

N

r
r r nv

N N r
n

N

r
nv

N r
n

rNr r
Nr
r

r r v nk
N N r

n

W x r rn r W

x r rn r W

W x r rn r r W

T
1

 (22)
which could be simplified as equation (23), for j0=0,…,r-1,
j1=0,…,r-1, v1=0,1,…,N/r2-1, and

1 1 1 1(1)0diag , , ,rj v rv r r v
N N N NW W WW . If the factorization

process will continue till we get rs transform of size r, then
Eq. (1) will be expressed as Eq. (24) and

(1)0diag , , ,
s s s

s s s sr j v r v r r v
N N N NW W WW .

In DSP Layman language, the factorization of an FFT can be
interpreted as dataflow diagram (or Signal Flow Graph), which
depicts the arithmetic operations and their dependencies. To be
noted that the dataflow diagram is read from left to right we will
obtain the decimation in frequency algorithm and where in
Eq. (16) is equal to r(-1), meanwhile if the dataflow diagram is
read from right to left we will obtain the decimation in time
algorithm and where in (16) is equal to r .

4. The One Stage FFT
Eq. (30) could be developed according to our special product,

1
0 0 1 1 1

22 2

-1
2

1 0, , / /, , /
0

[] , , []
v

j v rj v nv
r N r Nr r N r N rr r N r

n

X k W col T W col x r n rj j wT (23)

1
0,1, ,log 2 1

1
1

0 /, ,
0 0,1, , / 1

[] , [...]
ss

s s s
ss

s
s N sr s

v
s sr j v nv

r N s N rr r k
n v N r

X k W col x r n r j j WT (24)

 a)

1 0(,0, , , ,)S
r l j j v

B

01(,..,)[0]
Sj jx

()[]vX l

01(,..,)[1]
Sj jx

01(,..,)[1]
Sj jx r

1 0(,1, , , ,)S
r l j j v

B

1 0(, 1, , , ,)S
r l r j j v

B

 b)

()[]vX l
1 0(, , , ,)S

r l j j v
B

Fig. 3 Radix-r OSPE (a) using Br DIF in (11) and the symbol (b).

3587

(, ,) , and knowing that 23 24

2

0 0 0 0

0 / 2 / (1) /

0 2 / 4 / 2(1) /

0 (1) / 2(1) / (1) /

N N N N
N r N r r N r

N N N N
N r N r r N r

N N N Nr

r N r r N r r N r
N N N N

W W W W
W W W W
W W W W

W W W W

T (25)

where
,

N
lm

r N

r l m
WT (26), l=0,…,r-1, and m=0,…,r-1,

therefore, (21) could be simplified as:

0 1

1 1 1 1
1

1 0
0 0 0 0

[] [] N

S

JNl Nnr r r r J v
r rS S

v S N
j j j n

X l x r n r j j W

 (27)
where 1 2

1 2 1 0
S S

S SJ r J r j rj j and for
0,1, , 1, [0, 1]sj r s S , l=0,1,…,r-1, v=0,1,...,(N/r)-1,

S=logrN. The lth output of X is stored at the address memory
location given by the write address generator (WAG):

WAG l N r v . (28)
Finally, we can represent the execution of FFT in one stage (or
phase), by adopting the following notations:

01

1
(,..,) 1 0[] []

S

S S
j j Sx m x r m r j j (29)

0, , ..., ,
N

s

JNl NmJ v
r r

r Nl m j j v
WB . (30)

Fig. 3 illustrates the radix-r one stage processing element
(OSPE) in which r multipliers are implemented in parallel and
executed in one cycle. To increase the data throughput, we can
easily increase the degree of parallelism as shown in Fig. 4. All
FFT results from Fig. 4 are obtained in one clock cycle to satisfy
high sustained throughput applications. The data,

0, , ..., ,sr l m j j v
B ,

is localized at each multiplier and use an address generator based
on a simple digital counters.

The one stage FFT structure is suitable to customize the
hardware implementation take into account the VLSI constraints
such as data throughput, area, and power consumption. The
localized communication, regularity and recursiveness of
equations make the flexibility to satisfy a large application
domains. The proposed structure gives us the ability to divide a
process into serial and parallel portions (or pure parallel
portions) where the parallel parts are executed concurrently.

Tables I to III show the evaluation for adder matrix [4] and
proposed FFT (Fig. 2 and 4). Table II shows more clock cycles
than Table 1 but with a lower number of hardware resources by
applying a time multiplex implementation of the BPE (Fig. 2).
However, we drastically reduce the clock cycles using r OSPE in
parallel (Fig. 4) as shown in Table III.

5. Conclusion
Finally this paper has presented an efficient way of

implementing the FFT process by mean of the one iteration
radix-r kernel where a serial parallel model and a pure parallel
model have been represented. Also, it has been argued that a
reduction in the chip size, a reduction of its power consumption
and an increase of the performance of the system could be
achieved.

References
[1] J.W. Cooley and J.W. Tukey, "An algorithm for the machine calculation of

complex fourier series", Math. Comput., 19, pp. 297-301, April 1965.
[2] T. Widhe, J. Melander, and L. Wanhammar, "Design of efficient radix-8

butterfly PEs for VLSI", IEEE Int. Symposium on Circuit and Systems,
vol. 3, pp. 2084-2087, June 1997.

[3] M. Jaber, "Butterfly Processing Element for Efficient Fast Fourier
Transform Method and Apparatus", US Patent No. 6,751,643, 2004.

[4] Y. Jung, H. Yoon and J. Kim, "New Efficient FFT Algorithm and Pipeline
Implementation Results for OFDM/DMT Applications", IEEE Trans. on
Consumer Electronics, vol. 49, no. 1, pp. 14-20, Feb. 2003.

Appendix
Properties of special product , ,

ˆ
r r

Lemma

0, ,

0, ,

ˆ[] , []

ˆ , []

r rr r

r rr r

X k col x rn j

col x rn j

T W

T W
 (31)

Proof:

0

0 0

0, ,

, ,

ˆ[] , []

ˆ[] ,

r r r rr r rn j

r r r rrn j r r rn j

X k W col x rn j W col x

X k W col x W col x

T T

T T

1 0(0, , , ,)S
r j j v

B
01(,..,)[0]

Sj jx

01(,..,)[1]
Sj jx

01(,..,)[1]
Sj jx r

1 0(1, , , ,)S
r j j v

B

1 0(1, , , ,)S
r r j j v

B

(,)[0]v sX

(,)[1]v sX

(,)[1]v sX r

Fig. 4 Maximize the data throughput using r OSPE in parallel.

Table I Number of cycles need to execute a 4096-points FFT for different
radices by factoring the adder matrix.
Cycles Requirements Radix – 2 Radix – 4 Radix – 8
Phases 2 4 7
Memory accesses 71680 17408 5632
Complex multiplication 24576 5120 3072
Complex addition 24576 12288 6144

Table II Number of cycles needs to execute a 4096-points FFT for
different radices by implementing r BPEs in parallel (Fig. 2).

Cycles Requirements Radix – 8 Radix – 16
Phases 4 3
Memory accesses 3072 1536
Complex multiplication 1536 512
Complex addition 2048 768

Table III Number of cycles needs to execute a 4096-points FFT for
different radices by using r OSPE (Fig. 4).

Cycles Requirements Radix – 8 Radix – 16
Phases 1 1
Memory accesses 1024 512
Complex multiplication 512 16
Complex addition 512 16

3588

