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ABSTRACT

This paper proposes a clustering approach to parameter estimation
in distributed sensor networks. The proposed approach is an alter-
native to the conventional centralized and decentralized approaches.
This is made possible by the unique adaptive estimation architecture,
U-SHAPE, stemming from set-membership adaptive ltering. At
the expense of a slightly degraded mean-square error performance
(comparing to the least-squares approach), the proposed approach
offers improved data processing exibility in a distributed sensor
network, reduced signal processing hardware and reduced commu-
nication bandwidth and power requirements.

Index Terms— Sensor Network Signal Processing, Distributed
Estimation, Set-Membership Filtering.

1. INTRODUCTION

Signal processing for distributed sensor networks has been an ac-
tive area of research recently, see, e.g., [1–5]. In many practical
problems, it is desired to estimate an unknown common parameter
vector that characterizes the received signal at each sensor [6]. This
estimation problem is typically solved either by a centralized ap-
proach or a decentralized approach. This paper considers this prob-
lem with a clustering approach in which spatially distributed sensors
are grouped in clusters, which may consist of sensors distributed in
geometric proximity or sensors with similar characteristics.

Comparing to the conventional centralized estimation and de-
centralized estimation, the proposed clustering approach provides a
good compromise between the two. It reduces the amount of data
that the estimator at the fusion center needs to process when com-
pared to the centralized approach; it reduces the number of estima-
tors and the communication requirement, e.g., power and bandwidth,
between the fusion center and the local (cluster) estimators when
compared to the decentralized approach. This approach is also more
exible and makes more effective use of the diversity (e.g., spatial

diversity) offered by all sensors. In practice, the sensors located in
close proximity usually collect data with similar characteristics and
render some redundancy. Thus it is more appealing to process them
within a cluster using one estimator. In essence, the clustering ap-
proach would require less processing power, communication band-
width, and transmit power.
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Highlighting our approach to this clustered distributed estima-
tion problem is a novel adaptive estimation architecture, termed
U-SHAPE [7, 8], which features selective updates of parameter es-
timates and reduced hardware processors, and which is uniquely
suited for the proposed clustered distributed estimation problem.
The U-SHAPE architecture is an outcome of a novel adaptive lter-
ing paradigm, namely, set-membership adaptive ltering (SMAF),
see, e.g., [7–10]. To solve the proposed clustered distributed estima-
tion problem, this paper also derives extensions of two conventional
Optimal Bounding Ellipsoid (OBE) algorithms to accommodate for
the multi-dimensional measured signal vector. These newly derived
OBE algorithms offer optimal ways to combine the parameter esti-
mates rendered by different clusters. Simulation results have shown
that these extended OBE algorithms implemented with U-SHAPE
architecture yield performance comparable to that of RLS, while
offering signal processing complexity reduction, reduced bandwidth
and power in communications and additional exibility.

This paper is organized as follows: The next section presents
a brief overview of SMAF and the derivation of an extended OBE
algorithm. Section 3 presents the clustered solution with a notion of
optimality de ned in the framework of OBE. Simulation results are
given in Section 4 while Section 5 concludes this paper.

2. SMAF AND PROBLEM FORMULATION

All SMAF algorithms are derived from an error-bound speci cation
whose value is de ned according to applications, see, e.g., [7, 8]. A
general formulation that governs the input-output data relationship
for the clustered sensors scenario considered here is given by

yk =

⎡
⎢⎢⎢⎣

xT
1 (k)

xT
2 (k)
...

xT
M (k)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

w1(k)
w2(k)

...
wM (k)

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

n1(k)
n2(k)

...
nM (k)

⎤
⎥⎥⎥⎦

= Xkwk + nk

(1)

where Xk ∈ R
M×N is the input data matrix to the M network

nodes (or sensors) that estimate a common global parameter vector
wk ∈ R

N×1. In the case of a time-invariant parameter, wk = w.
In the SMAF framework, at a time instant k, the received data

pair {yk,Xk} de nes the constraint setHk

Hk = {w ∈ R
N : ‖yk −Xkw‖2 ≤ γ2}. (2)

where γ is a designer speci ed estimation error bound. Given a se-
quence of data pairs, {yk,Xk}, k = 1, 2, · · · , K, if the parameter
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vector to be estimated remains constant, it must lie inside the inter-
section of all the constraint sets, namely,

w ∈ ΩK
Δ
= ∩K

k=1Hk (3)

The ΩK in the above equation is termed the exact membership set.
Every point in the exact membership set is a legitimate estimate for
w as it is consistent with the presumed model and the received data.
Note that ΩK ⊆ ΩL, for any K ≥ L.

One of the important goals for any SMAF algorithm is to ob-
tain an effective analytical description of the exact membership set
ΩK . In practice, however, it is usually more convenient to nd some
analytically tractable outer bounding sets for ΩK . For example, the
Optimum Bounding Ellipsoid (OBE) algorithms [7,9] use ellipsoids
as such outer bounding sets. The OBE algorithms can be regarded
as one of the weighted RLS (WRLS) with forgetting factor whose
weighting factor is data-dependent (thus time-varying). Another im-
portant difference between OBE and WRLS algorithms is that, at
each recursion, the OBE algorithm renders a set of estimates. Each
point in the bounding ellipsoid is considered a feasible solution to
the underlying estimation problem.

A key feature of all recursive SMAF algorithms is a sparse data-
dependent update of parameter estimates. Speci cally, these algo-
rithms update parameter estimates only when the received data con-
tain suf cient new information (namely, innovation) to warrant an
update of the estimate. This results in a modular adaptive ltering
architecture that is comprised of two modules, an information evalu-
ator (IE), which decides whether an update of the parameter estimate
is needed; and an updating processor (UDP), which calculates the
new parameter estimate. Taking advantage of the sparse updates of
SMAF algorithms, the updators can be shared among a number of
channels, resulting in U-SHAPE (Updator-SHared Adaptive Param-
eter Estimation) [7, 8]. For the problem considered here, each clus-
ter has one IE that collects the data from all sensors within the same
cluster and decides if an update of the parameter estimate is needed.
If an update is needed, the data is passed down to a UDP. For a sen-
sor network that consists of Mc clusters, the proposed U-SHAPE
has Mc IE’s and Mu updators, where Mu < Mc. In this particular
scenario, data from each cluster of sensors will result in a parameter
estimate which, most likely, differ from other clusters’. These es-
timates need to be processed collectively by a post-processor that
combines all the parameter estimates from all clusters to reach a
consensus parameter estimate. Including the post-processor, this
expanded U-SHAPE architecture is henceforth referred to as EU-
SHAPE, Fig. 1.

Extending the conventional OBE algorithms and using the for-
mulation of (1), this section derives two OBE algorithms for vector
measurements. Let Ek−1 be the optimum bounding ellipsoid at time
instant k − 1,

Ek−1 = {w ∈ R
N : ‖w −wk−1‖2P−1

k−1
≤ 1} (4)

where wk−1 is the center of the ellipsoid and Pk−1 is a positive
semi-de nite matrix that characterizes the size (namely, the semi-
axes) of the ellipsoid. An ellipsoid Ek that contains the intersection
of Ek−1 and Hk is obtained by a linear combination of (2) and (4),
speci cally,

Ek = {w ∈ R
N : ‖w −wk‖2P−1

k
≤ 1}

= {w ∈ R
N : αk‖w −wk−1‖2P−1

k−1

+ βk‖yk −Xkw‖2 ≤ 1 + λkγ2}
(5)
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Fig. 1. Clustered estimation with EU-SHAPE.

where αk and βk are two coupled variables. In this paper we only
consider two possibilities, namely, (αk, βk) = (1 − λk, λk) with
λk ∈ [0, 1], or (αk, βk) = (1, λk) with λk ∈ [0,∞), where λk is
the parameter to be optimized. The former choice leads to an ex-
tension of the so-called DH-OBE algorithm [9], referred to here as
MIDH-OBE, which offers better MSE estimation performance. The
latter corresponds to an extension of the BEACON algorithm [11],
termed MI-BEACON, which provides a better trade off between per-
formance and complexity. Expressions for wk, P−1

k , λk, σ2
k can be

obtained in a similar manner as in [12].

wk = wk−1 + λkPkX
T
k ek

ek = yk −Xkwk−1

P−1
k = αkP

−1
k−1 + βkX

T
k Xk

σ2
k = αkσ2

k−1 + βkγ2 − αkβke
T
k Q−1

k ek

Qk = αkI + βkXkPk−1X
T
k

(6)

The MIDH-OBE and MI-BEACON algorithms are complete
after determining their corresponding the time-varying factors λk.
Employing the singular-value decomposition (SVD) of Qk , σ2

k can
be rewritten as

σ2
k = αkσ2

k−1 + βkγ2 − αkβk

∑
i

[eT
k vi(k)]2

αk + βkρi

≤ αkσ2
k−1 + βkγ2 − αkβk

‖ek‖2
αk + βkρmax

(7)

where ρmax = ‖XkPk−1X
T
k ‖2, i.e., the maximum singular value of

XkPk−1X
T
k . To avoid the computation of the maximum singular

value, we could use ρmax ≤ trace[XkP
−1
k−1X

T
k ]. Minimizing the last

expression (which upper bounds σ2
k) yields for the MI-BEACON

MI-BEACON:

(αk, βk) = (1, λk)

λk =

{
1

ρmax

[
‖ek‖

γ
− 1

]
if ‖ek‖ > γ

0 otherwise.

(8)
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and, for the MIDH-OBE,

MIDH-OBE:

(αk, βk) = (1− λk, λk)

λk =

⎧⎪⎨
⎪⎩

0 if ‖ek‖ ≤ γ

min{ξ, λ∗} if λ∗ > 0 and ‖ek‖ > γ

ξ ∈ (0, 1) (const.) otherwise.

(9)

where ξ is a prede ned constant (typically ξ = 0.5) and λ∗ is the
positive (real-valued) root of the following quadratic equation

f(λ) = (ρmax − 1)τkλ2 + 2τkλ + gk

gk = (γ2 − σ2
k−1)/‖ek‖2, τk = (ρmax − 1)gk + 1

⇒ λ∗ = − 1

ρmax − 1
+

√
1

(ρmax − 1)2
− gk − 1

(ρmax − 1)τk
.

(10)

3. CLUSTERED DECENTRALIZED SOLUTION

Given a network of M sensors grouped into Mc clusters, the sen-
sored data can be formulated similarly to (1) as

yk =

⎡
⎢⎢⎢⎣

y1,k

y2,k

...
yMc,k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

X1,k

X2,k

...
XMc,k

⎤
⎥⎥⎥⎦ w +

⎡
⎢⎢⎢⎣

n1,k

n2,k

...
nMc,k

⎤
⎥⎥⎥⎦ (11)

Clustering the data into Mc groups can, e.g., be motivated by
local proximity which results in spatial correlation and similar back-
ground noise statistics. For each of the Mc clusters, the MIDH-
OBE or the MI-BEACON algorithms in (6)–(9) can be employed
to estimate the unknown parameter vector w. With these OBE al-
gorithms, we can employ the EU-SHAPE architecture (see, Fig. 1)
which would, in general, require Mu < Mc updators for parameter
estimates.

We now consider the special case of two updators. Each updator
generates an ellipsoid, say EUi (i = 1, 2), that contains feasible
parameter estimates. To obtain a consensus estimate, w∗, we need
to nd an ellipsoid E∗ that tightly outer bounds the intersection of
EU1 and EU2. The resulting bounding ellipsoid and its center w∗,
which is taken as the point estimate, are given by

w∗
k = P∗

k[α′
kP

−1
U1,kwU1,k + β′

kP
−1
U2,kwU2,k]

= w∗
k−1 + P∗

k[α′
kλU1,kPU1,kX

T
U1,keU1,k

+ β′
kλU2,kPU2,kX

T
U2,keU2,k]

eUi,k = yUi,k −XUi,kw
∗
k−1, i = 1, 2

P∗−1
k = α′

kP
−1
U1,k + β′

kP
−1
U2,k

σ2
k = α′

kσ2
U1 + β′

kσ2
U2

− α′
kβ′

kΔwT
k

[
β′

kPU1,k + α′
kPU2,k

]−1
Δwk

Δwk = wU1,k −wU1,k

(12)

where, as in the previous section, (α′
k, β′

k) = (1 − λ′
k, λ′

k) for the
case of the MIDH-OBE algorithm, and (α′

k, β′
k) = (1, λ′

k) for the
MI-BEACON implementation. The equations for the optimal λ′

k are

similar to those obtained in the previous section. For the MIDH-
OBE algorithm we get

(α′
k, β′

k) = (1− λ′
k, λ′

k)

λ′
k =

{
min{ξ, λ∗} if λ∗ > 0

ξ ∈ (0, 1) (const.) otherwise.

(13)

where λ∗ is the same positive (real-valued) root as in (10) related to
the quadratic equation below

f(λ) = (ρ′
max − 1)τ ′

kλ2 + 2τ ′
kλ + g′

k

g′
k = (σ2

U2 − σ2
U1)/‖Δw̃k‖2, τ ′

k = (ρ′
max − 1)g′

k + 1

‖Δw̃k‖2 = ΔwT
k P−1

U1Δwk, ρ′
max = ‖P−1

U1PU2‖2
(14)

If complexity is a concern, simulation experience shows that choos-
ing λ′

k = ξ (i.e., a xed constant) gives comparable results.
In the implementation of EU-SHAPE, one also needs to address

the issues of contention resolution and scheduling of updates. Such
issues have been addressed for U-SHAPE in [7]. Due to space limi-
tation, those issues of EU-SHAPE are not addressed here. However,
brie y, one can use the a priori estimation error, namely, ‖ei,k‖2 =
‖yi,k −Xi,kwk‖2, of each cluster as a measure of scheduling pri-
ority. Note that ‖ei,k‖2 is a known quantity for it is used in IE.

4. SIMULATIONS

In this section, we examine the performance of the MIDH-OBE and
MI-BEACON algorithms, (6)–(9), implemented with EU-SHAPE
for the clustered adaptive estimation problem. We also compare the
results obtained to those of a standard WRLS algorithm which is
considered the fastest converging algorithm. The WRLS solution
used a forgetting factor λ = 0.99, and it reaches the consensus es-
timate by simply averaging the parameter and covariance estimates
rendered by all clusters. The error bound for the MIDH-OBE and
MI-BEACON algorithms is set by γ =

√
3Mcσ2

n.
The environment consists of M = 30 sensors and Mc = 10

clusters. Each sensor estimates a common parameter vector wo,
which is randomly generated here, with N = 20 coef cients. The
input of sensor i (i = 1, . . . , M ) is taken as colored noise generated
according to

xi(k) = ηix(k − 1) + ϑiwi(k), i = 1, . . . , M (15)

where wi(k) is a zero-mean Gaussian noise sequence, ηi ∈ [0, 1) is
chosen randomly and ϑi =

√
1− η2

i . The SNR for each sensor was
set to 30dB. The spatial correlation between sensors in one cluster is
de ned by the following correlation matrix

Rc =

⎡
⎢⎢⎢⎣

1 ς · · · ςM/Mc−1

ς 1 · · · ςM/Mc−2

... · · · . . .
...

ςM/Mc−1 ςM/Mc−2 · · · 1

⎤
⎥⎥⎥⎦ . (16)

where we have chosen ς = 0.9.
Fig. 2 shows the MSE versus iterations for the WRLS algorithm

and the MIDH-OBE algorithm that employs EU-SHAPE. The EU-
SHAPE was implemented with either Mu = 1 or Mu = 2 updators.
We see that the MIDH-OBE algorithm shows comparable results to
those of the WRLS in a clustered environment for the case when
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only Mu = 2 updators are employed. For Mu = 1, the convergence
speed is slightly decreased. However, we stress that the EU-SHAPE
architecture generally reduces the maximum updating complexity to
only about 10% for Mu = 1 and about 20% for Mu = 2 of that ob-
served with the WRLS implementation. This is because the WRLS
implementation requires updates to take place for all 10 clusters. In
addition, the sparse updates of the MIDH-OBE algorithm will fur-
ther reduce the overall complexity. In 400 iterations, the total num-
ber of times an update took place in the EU-SHAPE was 221 for
Mu = 1, and 324 for Mu = 2. This should be compared with a to-
tal of 4000 updates (400×Mc) required by the WRLS algorithm. In
other words, the overall complexity of the clustered MIDH-OBE al-
gorithm with Mu = 1 is in this example only 6% (8% for Mu = 2)
of that of the WRLS implementation.

Fig. 3 shows the results obtained with the MI-BEACON algo-
rithm for the same setup as described above. We see that the MI-
BEACON converges a little bit slower. However, the number of up-
dates is also reduced. In 400 iterations, the total number of times an
update took place in the EU-SHAPE was 170 for Mu = 1, and 253
for Mu = 2. As with the conventional BEACON [11], increasing γ
will reduce the number of updates even further at the expense of an
increased steady-state MSE (not shown here).
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Fig. 2. MSE versus iteration for the MIDH-OBE algorithm.

5. CONCLUSIONS

This paper proposes an distributed adaptive estimation architecture
with clustered sensors. Comparing to the conventional centralized or
decentralized estimation methods, the proposed approach offers ad-
ditional exibility and makes more effective use of diversity in pro-
cessing data received from individual sensors. In addition, it reduces
the signal processing and communication requirements. Simulation
results show that such improvements can be achieved without much
compromise in the mean-square error performance.
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