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ABSTRACT 
 
The so-called adaptive-gain-and-tau filter extends a recently 
suggested adaptive-gain tracking filter to a case with correlated 
target maneuver. The transition matrix of an appropriate Kalman 
filter (KF) depends on the maneuver correlation time, and the 
associated with this KF transfer function specifies the ARMA 
coefficients coupling the correlation time and the KF gain. Due 
to this link, one adaptation scheme is based on the ARMA 
identification. Another form of the adaptive filter represents a 
joint parameter/state estimator. Simulations undertaken for 
tracking filters of orders 2-4 illustrate their behavior and 
compare adaptively found parameters to optimal. 
 

Index Terms—Target tracking, adaptive filter, ARMA. 
 
 

1. INTRODUCTION 
 

The target tracking (variously kinematic, polynomial, trend) 
filter is in the focus of interest over decades [1-6]. Tracking 
filters of the 2nd, 3rd and even 4th order [4] are usually handled in 
the state-space form while the Kalman time-varying gain is 
replaced by a properly specified constant. Accordingly, most of 
past studies were focused on the steady-gain optimality [3, 6]. In 
the literature, one can find closed-form and numeric solutions 
providing optimal gains for particular types of the process and 
observation noise, maneuver type and other specifications. 

In real-life situations, however, one meets uncertain or non-
stationary conditions precluding direct use of theoretical 
findings. The tracking filter should be tuned empirically on the 
basis of given measurements and accepted model. 

In general, this task may be characterized as an adaptive 
Kalman filtering and solved indirectly, e.g., by evaluation of the 
process and measurement noise [9]. However, the specific model 
behind the target tracking filter with position measurements 
allows a more convenient direct adaptation of the filter gain. 

 Thus, a particular technique based on the minimum-error-
variance principle was applied to the so-called -  filter yet in 
[1-2]. Recently [7-8], adaptation of this and higher-order models 
( - - , - - - ) have been performed using the common 
prediction error method (PEM). As shown, the steady-gain filter 
specifies a MA model whose coefficients are linearly tied to the 
filter gain. This link underlies the adaptive-gain tracker [7-8]. 

The present work extends this approach to a case associated 
with the exponentially-correlated maneuver model, such as ECV 
or ECA [6], when the correlation time  appears as an auxiliary 
parameter. Instead of the above-mentioned MA form, the input-
output model becomes ARMA (with a single AR term) and this 
construction results in a so-called ‘adaptive-gain-and-tau’ filter. 

A goal of this work is to justify the PEM based ‘gain-and-
tau’ adaptation for some popular kinematic models. Concretely, 
we present the adaptive - - , - - -  and - - - -  filters, i.e., 
adaptive versions of usually encountered in practice trackers of 
orders 2-4. Two adaptation schemes are applied. The first is a 
two-stage algorithm based on the stand-alone adaptive ARMA-
predictor with its further mapping into the gain and  terms. The 
second is a variant of the joint parameter/state estimator. 

Simulations illustrate performance of the suggested adaptive 
filters in comparison to the steady-state Kalman estimator. For 
the inspected kinematic models the adaptive gain and  are, in 
general, shown to be in agreement with their optimal values. 

In the sequel, Section 2 recalls basics of the tracking filter 
and shows links between its state-space and input-output forms, 
Section 3 presents a short discussion of the problem, Section 4 
outlines suggested adaptation schemes, Section 5 describes the 
simulation study and Section 6 concludes the work. 

 
2. KINEMATIC FILTER 

 
Let xi be a function describing position of a moving target at 
instant i and xi=(xi, xi

(1),…, xi
(N-1))T is the vector of kinematic 

variables comprising xi and its derivatives xi
(m), m=1,…,N-1. The 

dynamical and observation models associated with the target 
motion can be given a common state-space equation form 

 (1) 
 
(2) 

where yi – observation, h = (1 0 0…) – 1×N measurement 
matrix, g – control vector, wi and vi are mutually uncorrelated 
process and measurement noises, respectively, with variances 
Q= w

2 and R= v
2. The transition matrix F describing a kinematic 

filter for the exponentially-correlated maneuver case becomes 
  

(3) 

where N is a flipped vector of the polynomial coefficients, 
 (4) 

0m×n - (m×n)-size zero matrix, and fN=(fN, fN-1,…, f1)T is a vector- 
function of the time-constant . One may compute components 
of f=fN recursively starting with f1=exp(-T/ ). Thus 

  
(5) 

Finally, given fN-1 one may write 
  

(6) 
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In particular, for several low-order terms 
 (7) 

The control matrix g=gN for the N-order kinematic filter (for 
brevity the subscript ‘N’ in gN, fN and other N-size terms is 
dropped whenever possible) is determined as gN=(fN+1,…, f2)T. 

The innovation-form equation of a Kalman filter is 
 (8) 

 
(9) 

where ei denotes innovation and ‘^’ marks the estimated state. 
Instead of the time-varying Kalman gain ki, a usual choice is 

the steady-state k=lim(ki) (i ). Common steady-state (e.g., -
 and - - ) filters construct the gain-vector k=(k1,…, kN)T as 

 (10) 

where =( , , , ,…)T is a vector of scalar gains, t=(1, 1/T, 
1/T2,…)T is a scaling vector dictated by the kinematic model, and 
‘º’ marks the dot product or, in other terms, array (element-by-
element) matrix multiplication. 

The innovation-form equation has an input-output analog 
 (11) 

where W=W(q) is a transfer function (TF), and q – forward time-
step operator. Note that ei in the input-output equation (11) is 
already interpreted as the prediction error rather than innovation. 

From the equation (8)-(9) (scalar-measurement case) follows 
 (12) 

where I stands for the unit-diagonal matrix. 
If F obeys (3) then, for any N, (12) specifies a TF of the form 

 (13) 

where q-1 - backward time-step operator, CN=1+c1q-1+…+cNq-N 
is an N-order polynomial in q-1, =1-q-1–backward difference, 
and a1 stands for the first (and alone) AR coefficient. 

The TF (13) defines an ARIMA model assuming the N-1-
order integration operator (or differencing of the input [10]). 
Coefficients a1 and {cm}, m=1,…, N, of this model are linked to 
the parameters  and f as shown in Table 1 (for N=2-4) with 
used for convenience notations s=f1, r=f2, p=f3, h=f4 and g=f5. 

 
Table 1. Equations for ARMA coeffcients, N=2-4. 
N Equation 
1  

2  

3  

4  

3. PROBLEM DISCUSSION 
 

Let us recall that behaviour of the ‘non-correlated’ kinematic 
filter depends uniquely on the kinematic gain which, in turn, is a 
function of the tracking index [5]. The state-space equation of 
such a filter may be interpreted as a MA model and the tracker 
gain is linearly connected to the MA coefficients [7-8]. 

The scenario with a ‘correlated’ kinematic filter requires a 
revision of this approach. Instead of the MA we have an ARMA 
model specified by the vector =(a1,cT)T. Unlike the ‘non-
correlated’ case, the matrix F is not constant and depends on . 
The latter should be estimated in excess to the kinematic gain. 

Methods to be mentioned in this context are, primarily, 
certain forms of an adaptive Kalman filter [9]. Another candidate 
is the subspace method based on extraction of the desired F from 
the observability matrix [10]. However, these (and some other) 
rather ‘heavy’ methods are hardly applicable in online mode. 

Handling this problem, one keeps in mind that in general the 
innovation whiteness is not a sufficient condition to identify the 
matrix F. Nevertheless, the kinematic model motivates a simple 
scheme exploiting explicit links between the state-space and 
ARMA forms. The adaptation scheme may be better understood 
from a ‘surrogate’ batch procedure based on the next reasoning. 

For any order N, the transition matrix F with s on the main 
diagonal gives the equality s=a1 (Table 1). Under assumption of 
known a1, the above equality provides  and therefore the whole 
vector f (irrespective of the MA coefficients {cm}). Given f, the 
relationships in Table 1 are reduced to linear equations with an 
explicit solution for k. That is, the ARMA and the state-space 
forms of the N-order tracking filter are in 1-1 correspondence 
providing a uniquely defined gain. The whole procedure may be 
viewed as a stand-alone ARMA identification stage followed by 
an explicit computation of the gain and . 

In ideal conditions, as a1 is known exactly, the linearly tied 
to {cm} k converges to a Kalman gain. If a1 is found empirically, 
the errors in f may cause a bias in k. However, on the basis of 
the experimental evidence, effect of these errors is rather weak. 

Let us take (Example 1) the 3rd-order ECA model with 
parameters TI=0.6, =5T (T=1). The measurement signal is 
generated due to Eq. (17). The ARMA parameters in Table 2 are 
estimated by the Matlab routine ARMAX. The desired gain is 
computed in the sequence a1 (r, p) ( , , ). Empirical 
results are compared with an analytical solution. For this aim we 
reproduced an algorithm [6] based on the spectral factorization. 

One may note from Table 2 that though the  estimator is 
rather sensitive to the error in a1 this is not the case for r and p. 
The latter two are estimated with sufficient accuracy even when 
 is rather far from 5 (as for 102÷103 samples). For an increased 

data length (104÷105) the estimated  is closer to 5 and deviations 
of vectors f and k from their ‘correct’ values become negligible. 

 
Table 2. Example 1. N=3,TI=0.6, =5. 

Number of samples Parms Theor. 
[6] 102 103 104 105 

a1 0.819 0.761 0.788 0.801 0.812 
c1 -1.388 -1.368 -1.336 -1.350 -1.380 
c2 0.833 0.769 0.780 0.790 0.826 A

R
M

A
 

c3 -0.179 -0.104 -0.155 -0.151 -0.174 
 5 3.667 4.141 4.508 4.794 

r 0.906 0.875 0.888 0.897 0.903 TF
 

p 0.468 0.457 0.462 0.465 0.467 
 0.782 0.863 0.803 0.812 0.785 
 0.564 0.428 0.559 0.545 0.560 G

ai
n 

 0.182 0.222 0.19 0.202 0.184 

iiii

iii

e
ey

kxFx
xhF

1

1

ˆˆ
ˆ

ii eqWy

FkFIh 11 qW

,!3,2, 4
3

53
2

423 fTffTffTf

tk

11

1

sc
sa

1
1/

2

1

1

sc
sTrc

sa

1
,//21

,/2

3

2
2

2
1

1

sc
TpssTrsc

Tpsc

sa

1

3+2
2

--
2

1

--
2

2332-
22

30.5

4

323

232

31

1

sc

s
T

hss
T

p
T
rsc

T
pssss

T
h

T
rc

s
T

hc

sa

1
1

1 1 qaCW N
N

3554



  

Figure 1. Block diagram of two-stage adaptive filter (Filter 1) 
 

 
Figure 2. Block diagram of one-stage adaptive filter (Filter 2) 

 
 

4. RECURSIVE ESTIMATORS 
 

We present two adaptation schemes. First, like the above batch 
procedure, the recursive filter is separated in two stages. The 
corresponding scheme in Fig. 1 starts with a stand-alone ARMA 
(instead of MA [8]) estimator driven by the N-1 difference of yi 
(other pre-filters are out the scope of this study). In each 
iteration, the identity s=a1 provides , f and, finally, F and k. The 
following state update has no effect on the ARMA estimator. 

With another, PEM-based, approach the filter estimates the 
kinematic state vector xi simultaneously with vectors f and k. 
For convenience however we handle the related vector =( T, 
s)T. The desired  and then components of f may be computed 
from s explicitly. Both the parameter and the state estimators are 
coupled in a single innovation-form loop (Fig. 2). 

The gradient for such an estimator is derived as 
  

(14) 

Note that z is the ARMA gradient of the form [10] 
  

(15) 

 where the so-called pre-filtered signals are determined as [10] 
 (16) 

The mapping matrix L= /  may be readily found from 
Table 1. All required terms of F are available from the given s. 

The PEM-gain computation block adopts from one side the 
measurement and innovation, while from another side it recieves 
the polynomial CN and matrix L. The filter composes the 
gradient , updates ‘P-matrix’, computes the gain G and then 
modifies the vector . Further this algorithm computes, using the 
same innovation, the transition matrix F, then the Kalman gain k 
and finally updates the current state xi. 

 
Figure 3. Gain and AR parameter (Scenario 1, N=2).  
 

 
Figure 4. Gain and AR parameter (Scenario 1, N=3). 
 

 
Figure 5. Gain and AR parameter (Scenario 1, N=4).  

 
5. SIMULATION STUDY 

 
In the following Scenario 1, the measurement yi is generated as 

 (17) 

Like in Example 1, TI=0.6 and =5T (T=1). For the ARMA 
estimation we apply the RARMAX routine of MATLAB with 
‘ff’ 0.998. With the Filter 1, the vector of ARMA coefficients  
in each iteration is mapped into s and k. Negative magnitudes of 
s are replaced by a positive quantity (specifically, 0.5). 
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In parallel, we apply Filter 2 as well. 
Figs. 3 to 5 depict results obtained for N=2-4, respectively. 

The dashed lines relate to the optimal reference found 
numerically (marked as T, theory). The solid lines relate to the 
two-stage adaptive Filter 1 (or A1) based on a preliminary 
ARMA estimation. The dotted lines relate to the second adaptive 
Filter 2 (A2), i.e., one-stage parameter/state estimator. For 
convenience, the plotted AR coefficient a1 is of opposite sign. 

Fig. 3 presents three estimated parameters, i.e., a1 and the 
gain factors  and . Two adaptive methods show very close, 
except an initial stage, results. After a certain convergence 
period, both estimators exhibit nearly identical history. 

Fig. 4 depicts four estimated parameters: a1 and gain factors 
, , and . Due to one extra parameter the gain-misadjustment 

noise slightly increases. While both filters converge Filter 1 is 
faster. After convergence, both behave likely. 

Fig. 5 plots five parameters: a1, , , , and . A further 
increase in the parameter-misadjustment noise is evident. In the 
depicted trial, Filter 2 considerably deteriorates and exposes a 
longer transient period. Actually it was observed from multiple 
trials that for the case with N=4 Filter 2 may diverge. 

By contrast, Filter 1 always holds stability, its AR-estimator 
converges to the correct value (nearly 0.82) and its gain - to the 
Kalman one. The results depend only on the correlation time  
and signal/noise ratio irrespective of particular trajectories 
occurring in trials. Observed parameter-misadjustment errors 
have no significant effect on the state estimator output. 

The above filters may be also applied to another scenarios 
varying in the type of trajectory, noise characteristics, and other 
conditions. Let us consider, e.g., Scenario 2 where the 
measurement signal is generated as a sinusoid of 5-unit 
amplitude and period 100·T corrupted by the white unit-strength 
additive noise. The measurement signal is treated with the 2-
order adaptive - -  filter. Fig. 6 reveals that in the initial period 
Filter 1 outperforms Filter 2, whereas finally both are similar. 
 

6. CONCLUDING REMARKS 
 

In the present study, we suggest a so-called adaptive-gain-and-
tau tracking filter, namely, its - - , - - -  and - - - -  
variants arising from the correlated target maneuver model. 

Two adaptation schemes are considered. The first (realized 
in Filter 1) is based on a canonical recursive ARMA-predictor 
whose coefficients are then mapped into the gain and  terms. 
With the second scheme (Filter 2), the joint parameter/state 
estimation is performed using the common innovation loop. 
Both adaptive filters asymptotically converge to similar 
solutions while Filter 1 yet exposes a more reliable behavior. 

A more complex scheme exploiting the direct adaptation of  
(instead of s) has been discarded since it considerably 
complicates the gradient without evident benefits. 

Noteworthy that monitoring of  facilitates adjustment of the 
model structure in addition to the filter parameter adaptation. Let 
us recall that if >>T, then s 1 and one obtains an N-order 
‘non-correlated’ kinematic filter [2]. As T/ , then s 0 and 
one obtains the ‘non-correlated’ kinematic filter of the lower 
order N-1. So, the N-order correlated-maneuver model covers a 
range between the N-1 and N-order ‘non-correlated’ kinematic 
models. The TF varies, respectively, between the N-1 and N-
order ARIMA types. As soon as a1 approaches 0 the N-order 
filter may be switched to the lower order N-1. Conversely, as a1 
approaches 1 the higher order N+1 may be applied. 

Summarizing, the suggested adaptive-gain-and-tau scheme 
provides a simple and efficient adaptive tracker for the case of 
correlated target maneuver with position-only observations. 

 

Figure 6. Gain and AR parameter in Scenario 2 (sine), N=2. 
 
 
An important point is that any ARMA signal with a single 

AR coefficient may be interpreted within a state-space filter 
framework in terms of convenient kinematic variables (position, 
velocity, etc). 

It is noteworthy that in a similar manner, one may construct 
adaptive tracking filters for other particular situations 
encountered in practice, i.e., position-and-velocity observations, 
correlated measurement noise, aggregation of the kinematic and 
sinusoidal models, 2-D and 3-D tracking scenarios, etc. 
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