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ABSTRACT
The problem of extraction/elimination of nonstationary sinu-
soidal signals from noisy measurements is considered. This
problem is usually solved using adaptive notch filtering (ANF)
algorithms. It is shown that the accuracy of frequency estima-
tes can be significantly increased if the results obtained from
ANF are backward-time filtered by an appropriately designed
lowpass filter. The resulting adaptive notch smoothing (ANS)
algorithm can be employed to perform many off-line signal
processing tasks, such as elimination of sinusoidal interferen-
ce from a prerecorded signal. In the single sinusoid case, we
show that when the unknown signal frequency drifts accord-
ing to the random-walk model, the optimally tuned ANS al-
gorithm is, under Gaussian assumptions, statistically efficient,
i.e. , it attains the Cramér-Rao type lower smoothing bound,
which limits accuracy of any frequency estimation scheme.

Index Terms— frequency estimation, adaptive filters

1. PROBLEM STATEMENT

Consider the problem of extraction or elimination of nonsta-
tionary complex sinusoidal signals (cisoids) from noisy mea-
surements y(t)

y(t) =
k∑

l=1

si(t) + v(t) = 1T
k s(t) + v(t)

where s(t) = [s1(t), . . . , sk(t)]T, 1k = [1, . . . , 1]T and

si(t) = ai(t)e

[
j

t∑
l=1

ωi(l)

]
, i = 1, . . . , k . (1)

We will assume that the complex-valued amplitudes ai(t) and
real-valued instantaneous frequencies ωi(t) ∈ [−π, π] are
slowly varying quantities, and that the measurement noise
v(t) is circular white.
Due to its large practical relevance, the problem of retriev-

ing noisy sinusoidal signals has attracted a great deal of inter-
est in the literature— see, e.g., [1] and references therein. Re-
cursive estimation of signal parameters — its amplitudes and
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frequencies — can be achieved in many different ways using
the so-called adaptive notch filtering (ANF) algorithms. In
this paper, we will focus our attention on a particular form of
ANF known as the multiple frequency tracker (MFT), the al-
gorithm proposed and analyzed in [2]. Let ŝ(t) = [ŝ1(t), . . . ,
ŝk(t)]T and Ω̂(t) = diag{ejω̂1(t), . . . , ejω̂k(t)}, where ŝi(t)
and ω̂i(t) denote the current signal and frequency estimates,
respectively. The MFT algorithm can be summarized as fol-
lows

ŝ(t) = Ω̂(t − 1)ŝ(t − 1) + P−1(t)1kε(t) (2)
ε(t) = y(t) − 1T

k Ω̂(t − 1)ŝ(t − 1)

P(t) = 1k1T
k + λΩ̂(t)P(t − 1)Ω̂∗(t − 1)

ω̂i(t) = ω̂i(t − 1) + (1 − ρ) Arg
[

ŝi(t)
ŝi(t − 1)ejω̂i(t−1)

]
i = 1, . . . , k

It can be controlled by means of adjusting two user-dependent
coefficients: the forgetting constant λ, 0 < λ < 1, which
determines the speed of amplitude tracking, and another for-
getting factor ρ, 0 < ρ < 1, which determines the speed of
frequency tracking.
Similarly, as in the majority of available ANF algorithms,

MFT is a causal estimation scheme, which means that the in-
stantaneous frequency estimates are obtained in terms of the
current and past measurements only. While in all real-time
applications causality is an obvious requirement, in many off-
line processing tasks, such as elimination of a sinusoidal in-
terference from a prerecorded signal, estimation can be based
on both past and “future” measurements. When appropri-
ately designed, such noncausal estimators, which incorporate
smoothing, yield smaller estimation errors than their causal
counterparts. We will show how the multiple frequency tra-
cker can be turned into a statistically efficient multiple fre-
quency smoother.

2. ADAPTIVE NOTCH SMOOTHING ALGORITHM
— THE SINGLE FREQUENCY CASE

The proposed smoothing procedure is two-pass. During the
first, forward-time pass, the MFT algorithm, described above,
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is used to obtain preliminary (biased) frequency estimates.
The second, backward-time pass, is needed to perform fil-
tering of the sequence of frequency estimates obtained in the
first stage of processing. The transfer function of the smooth-
ing (lowpass) filter depends on the frequency tracking charac-
teristics of MFT and will be determined analytically.

2.1. Filtering

For a single noisy cisoid (k = 1) the steady-state version of
the MFT algorithm (2) can be written in the form

ŝ(t) = ejω̂(t−1)ŝ(t − 1) + με(t)

ε(t) = y(t) − ejω̂(t−1)ŝ(t − 1)

ω̂(t) = ω̂(t − 1) + γ Arg
[

ŝ(t)
ŝ(t − 1)ejω̂(t−1)

]
(3)

where μ = 1 − λ and γ = 1 − ρ denote the corresponding
(small) adaptation gains.
Using the approximating linear filter technique, Tichavský

and Händel [2] established the following steady-state relation-
ship between the frequency estimation errorΔω̂(t) = ω̂(t)−
ω(t), the one-step frequency changes w(t) = ω(t)−ω(t−1),
and the scaled measurement noise z(t) = Im[v(t)/s(t)]:

Δω̂(t) ∼= F (q−1) − 1
1 − q−1

w(t) + (1 − q−1)F (q−1)z(t) (4)

F (q−1) =
(1 − ρ)(1 − λ)

1 − (2λ + ρ − ρλ)q−1 + λq−2

where q−1 denotes the backward shift operator.
Following [2], to obtain more specific analytical results, we

will assume that:

(A1) The measurement noise {v(t)} is a zero-mean circu-
lar white sequence of complex random variables with
variance σ2

v .

(A2) {s(t)} is a constant modulus signal, i.e. |s(t)| = |a|,
∀t.

(A3) The process {w(t)}, independent of {v(t)}, is a zero-
mean white noise with variance σ2

w (random-walk fre-
quency drift).

Note that under (A1) and (A2) {z(t)} is a real-valued white
noise with variance σ2

z = σ2
v/(2|a|2). Under (A1)—(A3) the

mean-squared frequency estimation error can be expressed in
explicit form as

E{ [ω̂(t) − ω(t)]2} ∼= σ2
v

|a|2
(1 − λ)(1 − ρ)

1 + 3λ + ρ(1 − λ)

+ σ2
w

ρ2(1 − λ)2 + 2λ(ρ + λ − 2ρλ)
[1 + 3λ + ρ(1 − λ)](1 − λ)(1 − ρ)

(5)

The minimum value of the frequency tracking error is achieved
for:

μ = μopt =
−u +

√
u2 + 4u

2
, γ = γopt =

μopt

2 − μopt

where
u = κ +

√
κ2 + 8κ (6)

and κ = |a|2σ2
w/σ2

v is a scalar coefficient that can be regarded
as a measure of signal nonstationarity. As shown in [2], under
Gaussian assumptions, the minimum mean-squared tracking
error obtained for the optimal settings

E{ [ω̂(t) − ω(t)]2|μopt, γopt}
∼= (−1 +

√
1 + 4u−1) σ2

w (7)

attains its lower limit known as the posterior Cramér-Rao bo-
und [3]. This means that in the case considered the optimally
tuned MFT algorithm (3) is a statistically efficient procedure
for tracking randomly drifting frequency.

2.2. Smoothing

To obtain a smoothed estimate of ω(t), further denoted by
ω̃(t), we will pass the estimates yielded by the “pilot” MFT
algorithm (3) through an appropriately designed noncausal
filter G(q−1) = . . . + g−1q

−1 + g0 + g1q
1 + . . .

ω̃(t) = G(q−1)ω̂(t) . (8)

The filter G(q−1) will be designed so as to minimize the
mean-squared frequency matching error E[(Δω̃(t))2], whe-
re Δω̃(t) = ω̃(t) − ω(t). Combining (4) and (8), one arrives
at

Δω̃(t) ∼= X(q−1) − 1
1 − q−1

w(t) + (1 − q−1)X(q−1)z(t) (9)

where
X(q−1) = F (q−1)G(q−1) (10)

Under (A1)—(A3), it holds that

E{ [Δω̃(t)]2} ∼= 1
2π

∫ π

−π

f
[
X(e−jξ)

]
dξ (11)

f [X] = c1(X − 1)(X∗ − 1)H1H
∗
1 + c2XX∗H2H

∗
2

where c1 = σ2
w, c2 = σ2

z ,H1(e−jξ) = 1/(1−ξ−1),H2(e−jξ)
= 1 − ξ−1. To avoid confusion with ω, the standard Fourier-
domain angular frequency variable is denoted here by ξ.
Minimization of (11) is pretty straightforward — the prob-

lem can be solved by minimizing f
[
X(e−jξ)

]
for every value

of ξ ∈ [−π, π]. Setting ∂f/∂X∗|X=Xopt = 0, one obtains
Xopt = c1H1H

∗
1/(c1H1H

∗
1 + c2H2H

∗
2 ) or equivalently

Xopt(q−1) =
c

c + (1 − q−1)2(1 − q)2
. (12)

where c = c1/c2 = 2σ2
w|a|2/σ2

v = 2κ.
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It turns out thatXopt(q−1), given by (12), can be expressed in
the form F (q−1)F (q). To determine coefficients λo = 1−μo

and ρo = 1−γo, which allow for such factorization, one must
solve the following two algebraic equations

μ2
oγ

2
o = 2(1 − μo)κ , μo = (2 − μo)γo (13)

(derivation is elementary but tedious). After extracting γo

from the second equation and substituting it in the first equa-
tion, one obtains

μ4
o − 2(1 − μo)(2 − μo)2κ = 0 . (14)

Note that the substitution

u =
μ2

o

1 − μo
(15)

turns the fourth-order equation (14) into the second-order equa-
tion u2−2κu−8κ = 0, which, given that u > 0, is equivalent
to (6). Furthermore, solving (15) for μo > 0 one obtains ex-
pression which is identical with μopt. The same holds for γo,
i.e. γo = γopt. In this way one arrives at

Xopt(q−1) = Fopt(q−1)Fopt(q) (16)

where Fopt(q−1) = F (q−1)|λ = λopt, ρ = ρopt.
Finally, given that the forward-time MFT algorithm is opti-

mally tuned, one obtains [cf. (10)]

Gopt(q−1) =
Xopt(q−1)
Fopt(q−1)

= Fopt(q) (17)

Since the filter Gopt(q−1) is anticausal, the smoothed esti-
mate ω̃(t) can be obtained by means of backward-time filter-
ing of the estimates yielded by the MFT algorithm (3). Such
backward-time filtering can be performed recursively using
the following equations

ω̃(t) = (2λ + ρ − ρλ)ω̃(t + 1) − λω̃(t + 2)
+ (1 − ρ)(1 − λ)ω̂(t)

t = N − 2, . . . , 1 (18)

where N denotes the number of available (prerecorded) data
samples and ω̃(N) = ω̂(N), ω̃(N−1) = ω̂(N−1). Note that
the optimal gains λopt and ρopt, usually not known a priori,
were replaced with λ and ρ, respectively — the gains used in
the tracking algorithm. Making such a choice is equivalent to
adopting G(q−1) = F (q).
Once the smoothed frequency trajectory is available, one

can use it to improve estimation results by running — as a
follow up to (3) — another algorithm that incorporates the
smoothed frequency estimates

ε̃(t) = y(t) − ejω̃(t−1)s̃(t − 1)

s̃(t) = ejω̃(t−1)s̃(t − 1) + με̃(t) . (19)

Note that the “frequency guided” filter (19), originally pro-
posed in [4] for the purpose of fixed-lag smoothing, does not
estimate the instantaneous frequency on its own— it relies on
frequency estimates obtained from the smoothing filter (18).

3. STATISTICAL EFFICIENCY

When the estimated frequency is time-invariant and the mea-
surement noise is circular Gaussian, the lower Cramér-Rao
frequency estimation bound (CRB) is proportional to 1/N3

[5]. When the instantaneous frequency is a stochastic vari-
able, the classical Cramér-Rao inequality does not apply. A
bound that is similar to the CRB, and can be applied to signals
with randomly drifting frequency, was derived by Tichavský
[3], based on a more general result due to van Trees [6].
This bound was called in [3] the posterior Cramér-Rao bound
(PCRB). Let ω̂ = [ω̂(1), . . . , ω̂(N)]T be any estimator (pos-
sibly biased) of the vector of instantaneous frequencies ω =
[ω(1), . . . , ω(N)]T, based on the entire observation history
Y(N) = {y(1), . . . , y(N)}. Denote by FN the the so-called
posterior Fisher information matrix for the problem at hand

FN =
1

σ2
w

[GN + 2κHN ]

GN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0 0
−1 2 −1 . . . 0 0

0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

HN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N N − 1 N − 2 . . . 2 1
N − 1 N − 1 N − 2 . . . 2 1
N − 2 N − 2 N − 2 . . . 2 1
...

...
...

...
...

2 2 2 . . . 2 1
1 1 1 . . . 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Finally, denote by [F−1]ij the (i, j)th element of F−1.
According to Tichavský [3], under (A1)—(A3) and under

Gaussian assumptions imposed on {v(t)} and {w(t)}, the
asymptotic (steady-state) value of the PCRB for any causal
estimator of ω(t) can be obtained from

LTB = lim
t�→∞ inf

ω̂(·)
E{ [ω̂(t) − ω(t)]2}

= lim
n�→∞

[
F−1

2n+1

]
2n+1,2n+1

. (20)

This bound, further referred to as the lower tracking bound
(LTB), can be computed analytically and is identical with the
right-hand side of (7).
The analogous quantity, limiting the steady-state perfor-

mance of any frequency estimation scheme (including all non-
causal estimators), will be called the lower smoothing bound
(LSB). It is given by

LSB = lim
t�→∞ inf

ω̃(·)
E{ [ω̃(t) − ω(t)]2}

= lim
n �→∞

[
F−1

2n+1

]
n+1,n+1

. (21)
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Fig. 1. Comparison of the theoretical values of the lower
smoothing bound (solid lines) and lower tracking bound (bro-
ken lines) with experimental results obtained for the signal
with randomly drifting frequency for three different speeds
of frequency variation: σw = 0.01 (∗), σw = 0.001 (×),
σw = 0.0001 (+), and for 16 different SNR values.

The lower smoothing bound can be evaluated numerically as[
F−1

2n+1

]
n+1,n+1

provided that n is sufficiently large.

Since, in the case of smoothing, the amount of data used
for estimation is effectively doubled compared to tracking,
it holds that LSB < LTB, i.e., the limiting accuracy of non-
causal estimators exceeds accuracy of their causal counter-
parts. In the randomly drifting frequency scenario, the achiev-
able reduction rate approaches 4 for small values of κ.

Numerical tests clearly demonstrate that the proposed ANS
algorithm is statistically efficient. Figure 1 shows a compar-
ison of the theoretical values of the lower smoothing bound
with experimental results obtained for the constant modulus
signal, subject to random-walk frequency drift, for three dif-
ferent speeds of frequency variation σw (0.01, 0.001 and
0.0001) and 16 different SNR values, ranging from 0 dB to 30
dB. The mean-squared frequency estimation errors were eval-
uated (for the optimally tuned ANS algorithm) by means of
joint time and ensemble averaging. First, for each realization
of the measurement noise sequence and each realization of the
frequency trajectory, the mean-squared errors were computed
from 200 iterations of the ANS filter (after the algorithm has
reached its steady state). The obtained results were next av-
eraged over 200 realizations of {v(t)} and 200 realizations
of {w(t)}. Note the good agreement between the theoretical
curves and the results of computer simulations.

4. MULTIPLE FREQUENCY SMOOTHER

Extension of the smoothing scheme, described in Section 2 to
the multiple frequencies case is pretty straightforward. The
two additional steps that should be taken after computing the
frequency estimates ω̂i(t), i = 1, . . . , k using the “pilot”MFT
algorithm (2), can be summarized as follows:

smoothing filter:

ω̃i(t) = F (q)ω̂i(t)
i = 1, . . . , k (22)

frequency-guided filter:

s̃(t) = Ω̃(t − 1)s̃(t − 1) + Q−1(t)1kε(t)

ε(t) = y(t) − 1T
k Ω̃(t − 1)s̃(t − 1)

Q(t) = 1k1T
k + λΩ̃(t)Q(t − 1)Ω̃∗(t − 1) (23)

where Ω̃(t) = diag{ejω̃1(t), . . . , ejω̃k(t)}.
The efficient initialization procedure, which can be used to

identify the number of frequency modes k and to determine
the initial frequency estimates, needed to start (2), was pre-
sented in [7].
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