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ABSTRACT 
Recently, Candan introduced higher order DFT-commuting ma-
trices whose eigenvectors are accurate approximations to the 
continuous Hermite-Gaussian functions (HGFs). However, the 
highest order 2k of the O(h2k) N N DFT-commuting matrices 
proposed by Candan is restricted by 2k+1 N. In this paper, we 
remove that restriction of order upper bound by developing a 
coefficient truncation technique to construct arbitrary-order 
DFT-commuting matrices. Exploiting that coefficient truncation 
technique, we also develop a method to construct n-diagonal 
arbitrary-order DFT-commuting matrices, whose number of 
nonzero diagonal bands n can be prespecified at will. Results of 
computer experiments show that the Hermite-Gaussian-like 
(HGL) eigenvectors of the new DFT-commuting matrices pro-
posed in this paper outperform those of Candan’s. 

Index Terms—commuting matrix, discrete Fourier trans-
form, Hermite-Gaussian function, discrete fractional Fourier 
transform, eigenvector 

1. INTRODUCTION 
1.1 Previous Works on DFT-Commuting Matrices 
The discrete fractional Fourier transform (DFRFT) is the frac-
tional version of the discrete Fourier transform (DFT). In order 
to define DFRFT whose outputs are sample approximations of 
the continuous fractional Fourier transform, generations of HGL 
DFT-eigenvectors are important for this kind of DFRFT defini-
tions [1]-[2]. In [1], the DFRFT is defined based on HGL eigen-
vectors computed from the Dickinson-Steiglitz extended-
tridiagonal commuting matrix of the DFT [3]. Pei et al. [2] pro-
posed another extended-tridiagonal DFT-commuting matrix 
whose eigenvectors are closer to the continuous HGFs than those 
of the Dickinson-Steiglitz matrix. Recently, Candan [4] proposed 
the higher order DFT-commuting matrices whose eigenvectors 
approximate the continuous HGFs even more accurately than 
those of the Dickinson-Steiglitz matrix [3] and those of the DFT-
commuting matrices introduced in [2]. Possible applications of 
the fractional Fourier transform in the signal processing area 
include optimal filtering [5], data encryption [6], etc. 

1.2 Continuous Hermite-Gaussian Functions (HGFs) 
The continuous HGFs are eigenfunctions of the continuous Fou-
rier transform and are solutions of the following second-order 
differential equation [7]: 
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It is shown in [1] that (1) can also be expressed as: 
f(t)tf })({ , where (2) 
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with  and  being the differentiation operator and the con-
tinuous Fourier transform operator, respectively. Therefore, the 
HGFs are also eigenfunctions of the operator  defined in (3). 

1.3 General DFT-Commuting Matrices 
The N N DFT matrix F is defined as 
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It is shown in [4] that any N N DFT-commuting matrix A can be 
expressed as: 

33221 LFFLFFFLFLA , (5) 
where L is an arbitrary N N matrix. In fact, the general form of 
the DFT-commuting matrix in (5) can be further simplified as 
follows.  

Definition: An N N matrix B is defined to be K-symmetric 
if [8] 

KBK=B, (6) 
where K is the circular reversal matrix given by  

NNJ0
0

FK
12  (7) 

with J being the (N-1) (N-1) reversal matrix whose nonzero 
entries are ones on the antidiagonal. An N 1 vector x is defined 
to be K-symmetric if Kx = x. 

Property 1: Let us define an N N matrix S as: 
S=M+FMF-1 (8) 

where M is an N N K-symmetric matrix. Then S commutes with 
F. 

Proof: FS=FM+F2MF-1=FM+F2MF-2F 
=FM+KMKF=FM+MF=SF. # 

From Property 1, a DFT-commuting matrix S can be con-
structed by first choosing a K-symmetric generating matrix M 
and then substituting it into (8). 

1.4 Candan’s Higher Order DFT-Commuting Matrices 
The (2k)th-order approximation to the second derivative is de-
rived by Candan [4], [9] and is: 
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where 2fk  fk+1-2fk +fk-1 is the second central differencing. Equa-
tion (9) is used by Candan [4] to derive the O(h2k) DFT-
commuting matrix. For example, from (9), the O(h4) approxima-
tion of the second derivative is  
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According to the work of Candan [4], the O(h4) 7 7 generating 
matrix M4 which approximates the second derivative can then be 
constructed by circularly shifting the O(h4) coefficient series     
{-1/12, 4/3, -5/2, 4/3, -1/12} in (10) as follows. First, define the 
O(h4) 1 7 generating vector m4 as: 

m4=[-5/2, 4/3, -1/12, 0, 0, -1/12, 4/3]. (11) 
Then the O(h4) 7 7 generating matrix M4 is [4]: 
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where m4(p) is obtained from m4 by circularly shifting it p posi-
tions to the right. Substituting M4 in (12) into (8), the O(h4) 
DFT-commuting matrix S4 can be obtained. From (8) and (3), 
the resulting DFT-commuting matrix S4 is a discrete approxima-
tion of the continuous HGF generating operator  in (3) and 
thus S4 has HGL eigenvectors. In [4], Candan showed that the 
eigenvectors of higher order DFT-commuting matrices are closer 
to HGFs than those of the lower order ones. From (9), the length 
of the coefficient series for O(h2k) approximation to the second 
derivative is 2k+1. Therefore, it is important to notice that in 
Candan’s work the highest order 2k of the N N O(h2k) DFT-
commuting matrix is restricted by 2k+1 N, such that the length-
(2k+1) coefficient series for (9) can be accommodated into the 
rows of the N N generating matrix M.  
 

2. COEFFICIENT-TRUNCATED ARBITRARY-
ORDER DFT-COMMUTING MATRICES 

In this section, we will modify Candan’s work in [4] by propos-
ing arbitrary-order DFT-commuting matrices using a coefficient 
truncation technique.  

Before introducing the coefficient truncation technique to 
construct arbitrary-order DFT-commuting matrices, we first 
observe the distribution of coefficient series for O(h2k) approxi-
mation to the second derivative in (9). For example, from (10), 
the O(h4) coefficient series are {-1/12, 4/3, -5/2, 4/3, -1/12}. 
From this 4th-order coefficient series and coefficient series of 
other orders, we find that the absolute values of the O(h2k) coef-
ficients near the central positions are larger and are dominant 
coefficients for all k. 

According to the above observation, we propose the O(h2k) 
N N DFT-commuting matrices using a coefficient truncation 
technique as follows. For the following discussions in this sec-
tion, we assume that 2k+1>N. Because 2k+1>N, Candan’s 
method in [4] cannot be directly applied for this case. However, 
because the central coefficients of the coefficient series for O(h2k) 
approximation to the second derivative in (9) are dominant coef-
ficients, we can use only the central N dominant coefficients to 
construct the generating matrix and set all of the remaining mi-

nor coefficients as zeros. Therefore, assume that the O(h2k) coef-
ficient series for (9) are {ak, ak-1, , a1, a0, a1, , ak}. Then the 
1 N O(h2k) coefficient-truncated generating vector m2k,N can be 
constructed as: 
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where = 2
N . In (13), the first subscript 2k indicates that the 

generating vector m2k,N is constructed from the O(h2k) approxi-
mation to the second derivative in (9) and the second subscript N 
indicates that the length-(2k+1) coefficients series for (9) are 
truncated to reserve only the central N dominant coefficients. 
With the generating vector m2k,N in (13), the corresponding O(h2k) 
N N generating matrix M2k,N can be easily constructed as: 
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where m2k,N(p) is obtained from m2k,N by circularly shifting it p 
positions to the right. M2k,N in (14) is K-symmetric because 
(m2k,N)T is K-symmetric, with T being the transpose operation. 
Consequently, M2k,N is a valid generating matrix. Then the corre-
sponding O(h2k) N N DFT-commuting matrix S2k,N can be com-
puted by substituting M2k,N in (14) into (8). 

For example, the O(h10) 7 7 generating matrix M10,7 can be 
constructed as follows. Assume that the coefficient series for the 
O(h10) approximation to the second derivative in (9) is {b5, b4, b3, 
b2, b1, b0, b1, b2, b3, b4, b5}. This length-11 coefficient series can 
then be truncated to a length-7 dominant coefficient series as {b3, 
b2, b1, b0, b1, b2, b3}. From (13), the O(h10) 1 7 generating vector 
m10,7 is: 

m10,7=[b0, b1, b2, b3, b3, b2, b1]. (15) 
Therefore, from (14), the O(h10) 7 7 generating matrix M10,7 is: 
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It is easy to verify that M10,7 is K-symmetric from the definition 
(6). 

Computer Experiment 1: First, we compute the HGL eigen-
vectors of the 32 32 DFT-commuting matrices of 2nd-order (S2), 
30th-order (S30), and coefficient-truncated 200th-order (S200,32). 
Fig. 1(a) plots the error norms for the HGL eigenvectors of those 
DFT-commuting matrices. Log scales of the same results are 
plotted in Fig. 1(b). In fact, S30 is the highest-order 32 32 DFT-
commuting matrix in Candan’s work [4], and S2 is the Dickin-
son-Steiglitz matrix [3]. From Fig. 1, the eigenvectors of higher 
order DFT-commuting matrices are closer to samples of HGFs 
than those of the lower order ones, as expected. Most of the HGL 
eigenvectors of S200,32 outperform those of S30. The total error 
norms of HGL eigenvectors in Fig. 1 for S200,32 and S30 are 
5.8285 and 7.2127, respectively. In Fig. 1(b), the HGL eigenvec-
tors of S200,32 with smaller numbers of zero-crossings degrade 
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because of the coefficient truncation. However, those degrada-
tions are negligible. 
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Fig. 1. Error norms for HGL eigenvectors of 32 32 DFT-
commuting matrices of 2nd-order (S2), 30th-order (S30), and coef-
ficient-truncated 200th-order (S200,32). (a) Normal scale. (b) Log 
scale. 
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Fig. 2. Transform results of the continuous fractional Fourier 
transform as well as the 64-point DFRFTs based on the 64 64 
DFT-commuting matrix of 2nd-order (S2), 62th-order (S62), and 
coefficient-truncated 500th-order (S500,64) for a rectangular signal 
(real parts: solid lines, imaginary parts: dashes, fractional or-
der=0.25). (a) Continuous fractional Fourier transform; (b) 
DFRFT based on S2 (RMSE=0.0913); (c) DFRFT based on S62 
(RMSE=0.0519); (d) DFRFT based on S500,64 (RMSE=0.0466). 

Next, in Fig. 2, we plot the continuous fractional Fourier 
transform as well as the 64-point DFRFTs [2] for the following 
rectangular signal: 

x(t) = 1 when |t|  17/16,      x(t) = 0 elsewhere. (17) 
All of the fractional orders for Figs. 2(a)-(d) are 0.25. The 
DFRFTs in Figs. 2(b)-(d) for samples of x(t) in (17) are com-
puted with sampling interval 1/8. Note that S62 used for  Fig. 2(c) 
is the highest-order 64 64 DFT-commuting matrix in Candan’s 
work [4]. From Fig. 2, the DFRFT based on DFT-commuting 
matrix of higher order is more similar to the continuous frac-
tional Fourier transform than that of lower order, in the sense of 
smaller RMSE (root-mean-square error). 
 
3. THE n-DIAGONAL ARBITRARY-ORDER DFT-

COMMUTING MATRICES 
Although the HGL eigenvectors computed from the lower order 
DFT-commuting matrices have larger error norms [4], the lower 
order DFT-commuting matrices have the advantage of sparse 
matrix structures which can be exploited to reduce the computa-
tions of their eigenvectors. For example, the O(h4) 7 7 DFT-
commuting matrix S4 can be derived by substituting the generat-
ing matrix M4 in (12) into (8) and is given in [1]. From (12) and 
the explicit expression of S4 in [1], we know that M4 and S4 are 
both 5-diagonal. In this paper, a matrix is called n-diagonal if its 
nonzero entries are at the n-diagonal or the extended n-diagonal 
entries. As another example, the O(h2) DFT-commuting matrix 
S2 is 3-diagonal [1]. In this section, we will use the coefficient 
truncation technique to develop n-diagonal arbitrary-order O(h2k) 
DFT-commuting matrices whose eigenvectors are closer to con-
tinuous HGFs than those of the n-diagonal DFT-commuting 
matrix introduced by Candan in [4].  

In Sec. 2, the coefficient series with length 2k+1 for the 
O(h2k) approximation to the second derivative in (9) are trun-
cated to the dominant coefficient series of length N, in order that 
the N N generating matrix M can accommodate them. In fact, 
the length-(2k+1) coefficient series for (9) can be truncated to a 
new coefficient series of odd length n, which is even smaller 
than N. The resulting O(h2k) generating matrix based on this new 
truncated coefficient series of length n will be n-diagonal as 
follows. Let us assume that n=2s+1, and the O(h2k) coefficient 
series for (9) are {ak, ak-1, , a1, a0, a1, , ak}. Then the trun-
cated dominant coefficient series with length n are {as, as-1, , 
a1, a0, a1, , as} with n<N. The O(h2k) generating vector based 
on this truncated coefficient series is given by:  

Nsssnk aaaaaa 11110,2 ],,,0,,,0,,,,[m  (18) 
where the second subscript n indicates that the length-(2k+1) 
coefficient series for (9) are truncated to reserve only the n cen-
tral dominant coefficients. With m2k,n in (18), the n-diagonal 
N N O(h2k) generating matrix M2k,n can be easily constructed as: 
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From (8), the N N DFT-commuting matrix S2k,n corresponding 
to M2k,n is: 

S2k,n=M2k,n+FM2k,nF-1. (20) 
Property 2: The N N DFT-commuting matrix S2k,n in (20) 

is n-diagonal. 

3547



 

In fact, the explicit expression of the n-diagonal N N O(h2k) 
DFT-commuting matrix S2k,n is given by 

S2k,n=M2k,n+diag(d0, d1, , dN-1),  (21) 
where M2k,n is given by (19), and d0, d1, , dN-1 are given by 

)cos(2 2

1
0 N

s
aad .  (22) 

Using the notation of this section, the n-diagonal N N DFT-
commuting matrix in Candan [4] is Sn-1,n because its order is 
fixed and is n-1 (i.e., there is no truncation for the coefficient 
series), where n is odd and n  N. 

Computer Experiment 2: In Fig. 3, we plot the error norms 
for HGL eigenvectors of the 7-diagonal 200th-order 32 32 DFT-
commuting matrix S200,7. For comparison, the HGL eigenvectors 
for the corresponding 7-diagonal 6th-order 32 32 DFT-
commuting matrix (without coefficient truncation) S6 of Candan 
[4] are also plotted in Fig. 3. From Fig. 3, we find that most of 
the HGL eigenvectors computed from S200,7 outperform those 
computed from S6 because the former uses larger order to ap-
proximate the second derivative. The total error norms of S200,7  
and S6 in Fig. 3 are 8.1323 and 12.3895, respectively. However, 
compared with S6, HGL eigenvectors with fewer zero-crossings 
for S200,7 degrade because of the coefficient truncation. Fig. 3 
also plots the error norms of HGL eigenvectors for 15-diagonal 
32 32 DFT-commuting matrices of order 200 (S200,15) and of 
order 14 (S14). From Fig. 3, most of the eigenvectors of S200,15 
are closer to HGFs than those of S14, again because the former is 
of higher order. Total error norms of S200,15 and S14 are 6.0688 
and 9.0638, respectively. Besides, compared with S200,7, the de-
gradations for HGL eigenvectors with fewer zero-crossings of 
S200,15 are very small because more dominant coefficients are 
reserved for S200,15 than for S200,7. 
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Fig. 3. Error norms for HGL eigenvectors of 7-diagonal DFT-
commuting matrices of order 6 (S6) and of order 200 (S200,7), as 
well as 15-diagonal DFT-commuting matrices of order 14 (S14) 
and of order 200 (S200,15), N=32. 

 
It should be noted that the coefficient truncation technique 

in this section can not be used to reduce the error norms for the 
HGL eigenvectors of the 3-diagonal N N O(h2k) DFT-
commuting matrix S2k,3, which is explained as follows. Let the 
1 N generating vector of S2k,3 be 

],0,,0,,[ 1103,2 aaakm . (23) 

Then the corresponding 3-diagonal N N O(h2k) generating ma-
trix is M2k,3=a0I+a1I1, where I is the identity matrix and I1 is 

given by 
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with N11 ]1,0,,0,1,0[e . (25) 
Therefore,  

S2k,3 =M2k, 3+FM2k, 3F-1=(a0I+a1I1)+(a0I+a1FI1F-1) 
= 2a0I+ a1(I1+FI1F-1), (26) 

where I1+FI1F-1 is the Dickinson-Steiglitz matrix [3]. From (26), 
S2k,3 and (I1+FI1F-1) have the same eigenvector set for all k. 

4.  CONCLUSION 
In this paper, we extended Candan’s work in [4] to construct 
arbitrary-order DFT-commuting matrices. Called as the coeffi-
cient truncation technique, the coefficient series with length 
2k+1 for the O(h2k) approximation to the second derivative were 
truncated to the length-N dominant coefficient series, based on 
which the N N O(h2k) generating matrix was then constructed. 
The coefficient truncation technique was also employed to con-
struct the n-diagonal arbitrary-order DFT-commuting matrices. 
Computer experiments were performed to demonstrate superior-
ity of the HGL eigenvectors computed from the arbitrary-order 
DFT-commuting matrices proposed in this paper. Discrete frac-
tional Fourier transform based on arbitrary-order DFT-
commuting matrices introduced in this paper will produce accu-
rate sample approximations of the continuous fractional Fourier 
transform. 
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