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ABSTRACT

In this paper, we study the inverse short-time Fourier trans-
form (STFT). We propose a new vector formulation of STFT.
We derive a family of inverse STFT estimators and a least
squares one. We discuss their relationship and compare their
performance with respect to both additive and multiplicative
modifications to STFT. The influence of window, overlap, and
zero-padding are investigated as well.

Index Terms— inverse short-time Fourier transform, time-
frequency analysis, least squares methods

1. INTRODUCTION

The short-time Fourier transform (STFT) is a useful tool to
analyze nonstationary signals and time-varying systems. It
has been successively applied to a large number of signal
processing applications like time-frequency analysis, speech
enhancement, echo cancelation, and blind source separation.
The problem of the inverse STFT (ISTFT) is to construct
the original time domain sequence from a modified STFT.
The modification could be additive or multiplicative. Sur-
prisingly, ISTFT has not been studied systematically in the
literature. Almost all papers up to now including many recent
publications use a heuristic overlap-add method for comput-
ing ISTFT [1, 2, 3, 4]. It combines the results of the inverse
Fourier transform of different sections by overlap-add. In
[5], a weighted overlap-add procedure has been proposed, but
without a guideline about the optimum weighting.

STFT is a linear operation. Due to section overlapping
and zero-padding, the result of STFT contains a larger number
of samples than the original time domain sequence. Clearly,
ISTFT is a linear overdetermined problem for which the least
squares (LS) approach is well applicable [6].

In this paper, we take a detailed look at ISTFT. In com-
parison to [6], our contributions are: 1) We derive a novel
compact vector formulation of STFT. It facilitates the work-
ing with STFT and is also useful for other purposes. 2) We
derive a family of heuristic ISTFT estimators including the
classical overlap-add method. 3) We also derive a LS esti-
mator. While [6] assumed a continuous-frequency represen-
tation, we focus on the discrete-frequency Fourier transform.
In addition, we allow zero-padding and non-equally spaced
frequencies. 4) We clarify the relationship between differ-
ent ISTFT estimators. 5) We compare their performance with
respect to both additive and multiplicative modifications to
STFT. 6) Finally, we also study the influence of window, over-
lap, and zero-padding on ISTFT.

The following notations are used in the paper. Matrices
and column vectors are represented by boldface and under-
lined characters. The superscript T and H denote transpose
and Hermitian transpose, respectively. ‖ · ‖ is the Euclidean
vector norm. diag(·) describes a diagonal matrix.

2. VECTOR FORMULATION OF STFT

We first derive a new vector formulation of STFT. This will
be the basis for further investigations.

A time domain sequence x(n) (n ≥ 0) is divided into
M overlapping sections. Each section has the length N . The
shift length from section to section is 1 ≤ S ≤ N . The
overlap length between two adjacent sections is N − S, see
Fig. 1. Let

xm = [x(mS), x(mS+1), . . . , x(mS+N−1)]T ∈ C
N (1)

denote the m-th section (0 ≤ m ≤ M − 1) of x(n). M
such overlapping sections with a shift length S contain a total
number of J = (M − 1)S + N samples x(0), . . . , x(J − 1)
with J ≤ MN . Let

x = [x(0), x(1), . . . , x(J − 1)]T ∈ C
J (2)

be the vector of all involved samples. The relationship be-
tween x and xm in (1) is described by

[xT
0 , xT

1 , . . . , xT
M−1]

T = Ox (3)

where

O =

⎡
⎢⎢⎢⎢⎢⎣

IN

S

IN

. . .

IN

⎤
⎥⎥⎥⎥⎥⎦
∈ R

MN×J (4)

is a so called overlap matrix. It consists of M identity ma-
trices IN along the main diagonal. Each identity matrix is
shifted by S columns to the right with respect to the above
one. The left-multiplication of x by O corresponds to its seg-
mentation into M overlapping sections as shown in Fig. 1.

Each section xm is now weighted by a real valued win-
dow w(n) of the same length. We assume that w(n) is non-
zero and thus invertible. Then this windowed sequence is ap-
pended by K − N zeros before the K-point Fourier trans-
form Xm(k) is calculated at K discrete frequencies ωk (0 ≤
k ≤ K − 1) with K ≥ N . In general, ωk do not need to
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Fig. 1. Ox: Divide a sequence x into overlapping sections

be equally spaced like in discrete Fourier transform (DFT). In
matrix-vector-notation, the Fourier transform is described by

Xm = [Xm(0), . . . , Xm(K − 1)]T = FPWxm ∈ C
K (5)

with

W = diag(w(0), . . . , w(N − 1)) ∈ R
N×N ,

P =

[
IN

0(K−N)×N

]
∈ R

K×N , (6)

F = [e−jωkn]0≤k,n≤K−1 ∈ C
K×K .

W is a diagonal window matrix. P consists of an N × N
identity and a (K − N) × N zero matrix and describes the
zero-padding. F is the square Fourier transform matrix with
the element e−jωkn at the k-th row and n-th column, both
counted starting from zero.

We stack the Fourier transforms of all M sections into a
single column vector

X = [XT
0 ,XT

1 , . . . , XT
M−1]

T ∈ C
MK . (7)

By using (3), (5), and the notation A ⊗ B = [aijB]i,j for
the Kronecker tensor product, we finally obtain the linear re-
lationship between the complete time domain sequence x and
its windowed zero-padded STFT X

X =

⎡
⎢⎣

FPW

. . .
FPW

⎤
⎥⎦

⎡
⎢⎣

x0
...

xM−1

⎤
⎥⎦

= Hx, H = (IM ⊗ (FPW))O. (8)

The meaning of the different matrices in (8) is self-explained:
• O: overlapped segmentation
• W: windowing
• P: zero-padding
• F: discrete-frequency Fourier transform
• IM⊗: section-by-section processing

3. A FAMILY OF HEURISTIC ISTFT ESTIMATORS

Starting from (8), we now study how to compute the corre-
sponding ISTFT.

If X denotes the exact STFT of a given time domain se-
quence x, we can uniquely determine x. In practical applica-
tions, however, the STFT is often modified before it is trans-
formed back into the time domain. In this case, there is in

general no time domain sequence x whose STFT matches ex-
actly X because X contains more elements than x if S < N
(true overlapping) or K > N (true zero-padding). The prob-
lem is overdetermined. The question is how to compute a
reasonable estimate x̂ for x from X?

A simple but heuristic idea is based on the following ob-
servation: If we multiply both sides of (8) by the J ×MK
matrix O

H(IM ⊗Ap) from left with Ap = W
p−1

P
H
F
−1 ∈

C
N×K , we obtain according to (A⊗B)(C⊗D) = AC⊗BD

[7] the following result

O
H(IM ⊗Ap)X

= O
H(IM ⊗Ap)(IM ⊗ (FPW))Ox

= O
H(IM ⊗ (ApFPW))Ox

= O
H(IM ⊗W

p)Ox, (p = 0, 1, 2 . . .). (9)

W
p is a diagonal matrix containing the diagonal elements

wp(n). This motivates the following family of estimates

x̂p = D
−1
p O

H(IM ⊗Ap)X, Dp = O
H(IM ⊗W

p)O.
(10)

We call it the p-ISTFT estimate.

Step Meaning
1) F

−1 inverse Fourier transform of Xm

2) P
H keep only the first N samples of F

−1Xm

3) W
p−1 weight these N samples by wp−1(n)

4) IM⊗ do the above computations for all M sections
5) O

H overlap-add of the results of all sections
6) D

−1
p final normalization

Table 1. Steps of p-ISTFT

Note that Eq. (10) has a simple interpretation. Table
1 summarizes all steps of p-ISTFT. The first four steps are
easy to understand. According to the definition of the over-
lap matrix O in (4), the operation O

Hz in the 5-th step with
z = [zT

0 , . . . , zT
M−1]

T ∈ C
MN describes the well known

overlap-add of the M sections zm. The shadowed areas in
Fig. 2 represent the overlap-add regions. Fig. 3 illustrates
the matrix overlap-add operation O

H(IM ⊗ U)O where U

is any N × N matrix. The result is a J × J matrix in which
adjacent matrices U along the main diagonal overlap and add
in an (N − S) × (N − S) area. Clearly, if U = W

p =
diag(wp(0), . . . , wp(N−1)) is diagonal, then the matrix Dp =
O

H(IM ⊗W
p)O is diagonal as well

Dp = diag(dp(0), . . . , dp(J − 1)) ∈ R
J×J . (11)

The diagonal elements dp(n) are obtained by overlap-adding
M sections of wp(0), . . . , wp(N − 1) as in Fig. 2. The last
normalization step in Table 1 involves thus only J scalar di-
visions.

3.1. LS inverse STFT estimator

Since ISTFT is a linear overdetermined problem, it is natural
to apply the least squares (LS) approach to the signal model
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H(IM ⊗U)O: Overlap-add of matrices

(8). After some calculations, we obtain the LS estimate

x̂LS = (HH
H)−1

H
HX

= D
−1
LSO

H(IM ⊗ (WP
H
F

H))X,

DLS = H
H
H = O

H(IM ⊗U)O,

U = WP
H
F

H
FPW. (12)

It is referred to as LS-ISTFT.

4. DISCUSSIONS

Below we discuss the relationship between different ISTFT:
• The classical overlap-add method [1, 2, 3, 4] is a special

case of our p-ISTFT with p = 1.
• The LS solution from [6] is identical to p-ISTFT with

p = 2. It assumed, however, a continuous-frequency
Fourier transform.

• Our LS-ISTFT is derived for the discrete-frequency case.
In general, i.e. for arbitrary discrete frequencies ωk, U
and thus DLS in (12) are not diagonal. In this case, the
matrix inversion D

−1
LS is expansive and x̂LS differs from

x̂p and the LS solution from [6].
• In the special case of DFT with equally spaced discrete

frequencies ωk = 2πk
K

(0 ≤ k ≤ K − 1), F
H
F =

KIK ,U = KW
2,FH = KF

−1, and x̂LS simplifies
to x̂2.

Besides the choice of the estimator, the inverse STFT also
depends on a number of other factors like the modification of
the STFT, the choice of the window, the shift length S, and
the number of appended zeros K − N . Below we study the
influence of these factors on ISTFT.
• If X denotes the exact STFT of a time domain sequence

x, then both x̂p and x̂LS return the same x. This can be
easily shown be combining (8) and (10) as well as (12).

• If we use the rectangular window w(n) = 1, then all
estimators x̂p return the same result. In this case, W =
IN and x̂p in (10) does not depend on p.

• If there is no overlap between adjacent sections (S =
N ), then all estimators x̂p return the same result as well.
In this case, O = IMN and x̂p simplifies to (IM ⊗

(W−1
P

H
F
−1))X .

We expect a small difference between various p-ISTFT esti-
mators if the modification to STFT or the deviation of w(n)
from the rectangular window or the overlap length is small.

Concerning the computational complexity, all p-ISTFT
estimators and the DFT-based version of LS-ISTFT are com-
parable to the classical overlap-add method. For each section,
one inverse Fourier transform has to be computed. The only
difference is the use of different windows wp−1(n) for the
scaling of the inverse Fourier transform and the computation
of the final normalization sequence dp(n) in (11).

5. EXPERIMENTS

In this section, we compare the performance of different ISTFT
estimators. We use clean speech signals of roughly 6 sec-
ond duration sampled at 16 kHz in our experiments. For each
speech signal x, we compute its STFT and modify it by ad-
ditive noise or multiplicative masking. Then we compute the
signal estimate x̂ for different ISTFT estimators. Since DFT
(FFT) is used, x̂LS is identical to x̂2 and will not be consid-
ered separately. The performance measure is the signal-to-
distortion ratio (SDR) in the time domain after the signal re-
construction

SDRp = 10 log10(‖x‖
2/‖x− x̂p‖

2) dB. (13)

In particular, we focus on SDR2 of the LS estimator and the
performance loss of other estimators ΔSDRp = SDR2 −
SDRp with respect to that. For statistical averaging, we use
8 different utterances from a male and a female speaker and
calculate the average values of SDR2 and ΔSDRp over these
8 speech signals. The default parameter set for the Fourier
transform is hamming window, window length N = 512,
shift length S = N/2, and FFT length K = N unless other-
wise stated.

Additive distortion
First we consider additive distortion. X is modeled as Hx +
N . Hx is the exact STFT of x and N contains realizations
of zero-mean uncorrelated random variables with equal vari-
ance σ2. The variance is chosen to achieve a certain signal-
to-noise ratio (SNR) in the time-frequency domain SNR =
10 log10(‖Hx‖2/‖N‖2). For this particular signal model, it
is well known that the LS estimator x̂LS = x̂2 achieves the
smallest variance among all linear unbiased estimators like
x̂p. In addition, the variance of x̂p increases linearly with σ2.

The default value of SNR is 10 dB. In Table 2, we use
different invertible windows. The window names are taken
from MATLAB. In Table 3, we vary the overlap length N−S.
In Table 4, we change the FFT length K.

Multiplicative distortion
In a second series of experiments, we multiply the exact STFT
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with a mask, a typical operation in underdetermined blind
source separation based on the spareness of speech signals
in the time-frequency domain [4]. Due to limited space, we
only consider a binary mask. The mask is determined such
that pmask percentage of the time-frequency points with the
highest amplitude of Hx pass the mask. In all other time-
frequency points, the binary mask is zero.

In Table 5, we choose different values for pmask. The
other parameters are identical to the default choice in the pre-
vious subsection. In Table 6 to 8, we keep pmask = 30% and
repeat the same performance study with respect to window,
overlap, and zero-padding as previously.

window SDR2 ΔSDR0 ΔSDR1 ΔSDR3

rectwin 13.00 0 0 0
kaiser (β=0) 13.00 0.01 0 0

hamming 12.47 9.26 1.08 0.10
triang 7.22 20.30 0.33 0.03

Table 2. Additive distortion: Varying window

N − S SDR2 ΔSDR0 ΔSDR1 ΔSDR3

0 0.23 0 0 0
N/8 5.00 0.82 0.17 0.07
N/4 8.50 3.97 0.55 0.09
N/2 12.47 9.26 1.08 0.10
3N/4 15.27 9.13 1.15 0.20

Table 3. Additive distortion: Varying overlap length

K SDR2 ΔSDR0 ΔSDR1 ΔSDR3

N 12.47 9.28 1.08 0.10
1.5N 14.25 9.30 1.10 0.10
2N 15.50 9.34 1.10 0.10

Table 4. Additive distortion: Varying zero-padding

Observations
We draw the following conclusions from the above experi-
ments:
• In additive distortion, x̂LS = x̂2 is the best one as ex-

pected. In binary masking, x̂LS is almost the best one
among the tested linear estimators, but not always be-
cause of ΔSDR3 < 0 in Table 6 and 8.

• x̂0 has a poor performance. The weighting of the in-
verse Fourier transform with w−1(n) amplifies the dis-
tortion if w(n) is close to zero. This happens at both
end of each section, particularly for the window “tri-
ang”.

• The classical overlap-add method x̂1 is always worse
than the LS one with a SDR loss of up to 1 dB. Inter-
estingly, it is also worse than x̂3.

• There is almost no performance difference between x̂2
and x̂3.

• As expected, the larger the overlap length is, the larger
the SDR improvement of x̂2 is.

• Zero-padding has a fairly small impact to the perfor-
mance difference.

• In order to achieve a good absolute performance SDR2,
a large overlap is highly desirable resulting in a larger
number of noisy samples. Also zero-padding is advan-

pmask SDR2 ΔSDR0 ΔSDR1 ΔSDR3

10% 21.32 5.48 0.29 0.07
20% 28.16 6.31 0.43 0.06
30% 33.60 7.41 0.60 0.06
40% 38.74 8.75 0.82 0.06
Table 5. Multiplicative distortion: Varying mask

window SDR2 ΔSDR0 ΔSDR1 ΔSDR3

rectwin 29.18 0 0 0
kaiser (β=0) 29.40 0.18 0.09 −0.09

hamming 33.60 7.41 0.60 0.06
triang 33.52 21.74 0.36 0.06

Table 6. Multiplicative distortion: Varying window

N − S SDR2 ΔSDR0 ΔSDR1 ΔSDR3

0 23.51 0 0 0
N/8 28.85 1.59 0.45 −0.03
N/4 31.33 3.88 0.43 0.09
N/2 33.60 7.41 0.60 0.06
3N/4 34.49 5.87 0.51 0.02

Table 7. Multiplicative distortion: Varying overlap length

K SDR2 ΔSDR0 ΔSDR1 ΔSDR3

N 33.60 7.41 0.60 0.06
1.5N 33.90 5.95 0.38 0.06
2N 34.02 5.72 0.35 0.06

Table 8. Multiplicative distortion: Varying zero-padding

tageous though the improvement is much smaller.
• For additive distortion, flat windows like “rectwin, kaiser,

hamming” are better. For multiplicative distortion, “ham-
ming, triang” windows are preferred. Hence the ham-
ming window seems to be a good compromise.
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