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ABSTRACT
It is well-known that the discrete Fourier transform (DFT) of a finite
length discrete-time signal samples the discrete-time Fourier trans-
form (DTFT) of the same signal at equidistant points on the unit cir-
cle. Hence, as the signal length goes to infinity, the DFT approaches
the DTFT. Associated with the DFT are circular convolution and a
periodic signal extension. In this paper we identify a large class
of alternatives to the DFT using the theory of polynomial algebras.
Each of these transforms approaches the DTFT just as the DFT does,
but has its own signal extension and own notion of convolution. Fur-
ther, these transforms have Vandermonde structure, which enables
their fast computation. We provide a few experimental examples
that confirm our theoretical results.

Index Terms— Discrete Fourier transforms, spectral analysis,
boundary value problems, algebra, algebraic signal processing the-
ory, Vandermonde matrix

1. INTRODUCTION

The discrete-time Fourier transform (DTFT) for a discrete-time sig-
nal with finite support s = (s0, . . . , sn−1) is given by

y(θ) =
∑

0≤�<n

s�e
−jθ�, θ ∈ [0, π). (1)

Computing y(θ) is equivalent to evaluating the polynomial s(x) =∑
0≤�<n s�x

� on the unit circle e−jθ, θ ∈ [0, π).
A related, finite representation of s is computed via the discrete

Fourier transform (DFT):

yk = y( 2πk
n

) =
∑

0≤�<n s�e
−j 2πk

n
�, 0 ≤ k < n. (2)

Computing y(k) is now equivalent to evaluating s(x) at the n nth
roots of unity e−2πkj/n, 0 ≤ k < n, and shows that the DFT in
(2) samples the DTFT in (1) at equidistant points on the unit circle.
Hence, as n goes to infinity, the DFT approaches the DTFT. Further,
it is well-known that applying the DFT assumes that the signal s is
periodically extended and that the associated convolution becomes
circular convolution.

Contribution. In this theoretical paper we derive a large set
of alternatives to the DFT. Each of these transforms approaches the
DTFT as n goes to infinity, has its own associated boundary condi-
tion and signal extension (which hence are not periodic), and own
notion of convolution. Further, these transforms have Vandermonde
structure, which enables their fast computation using O(n log2(n))
operations. For several examples, we experimentally confirm our
theoretical result and show how they compare to the DFT when ap-
plied to a signal.

The derivation of the alternatives to the DFT makes use of the
Beraha-Kahane-Weiss theorem [1] that describes the asymptotic be-
havior of root sets of polynomials. We combine this theorem with
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the theory of polynomial algebras [2], which is known to describe
the DFT algebraically [3, 5]. This connection was recently extended
in the algebraic signal processing theory [4].

Organization. Section 2 explains the polynomial algebra frame-
work underlying both the DFT and the alternative transforms that we
derive in this paper. This framework reduces the problem of deriv-
ing the alternative transforms to finding sequences of polynomials
whose root sets converge to the unit circle. We identify a large class
of such sequences in Section 3 and consider a few concrete examples
for experiments in Section 4. We conclude with Section 5.

2. BACKGROUND

The key to deriving alternatives to the DFT is its interpretation in the
framework of polynomial algebras C[x]/pn(x), which we overview
in this section. Every polynomial algebra has an associated notion
of boundary condition, signal extension, convolution, spectrum, and
Fourier transform, as explained in the algebraic signal processing
theory [5, 4]. As running example, we use C[x]/(xn − 1), which is
known to be associated with the DFT [3].

In short, we will show in this paper that polynomials pn(x) other
than xn − 1 can be used to define alternatives to the DFT.

Polynomial algebra. An algebra is a vector space that is also
a ring, i.e., permits the multiplication of its elements. Examples in-
clude the complex numbers C and the complex polynomials C[x].

Let pn(x) = xn +
∑

0≤i<n βix
i be a (normalized) polynomial

of degree deg(p) = n. The set of all polynomials of degree less
than n,

C[x]/pn(x) = {s(x) =
∑

0≤�<n

s�x
� | deg(s) < n}

with addition and multiplication modulo p(x) is called a polynomial
algebra. As a vector space, C[x]/p(x) has dimension n. As a basis,
we choose b = (1, x, . . . , xn−1). For s(x) ∈ C[x]/p(x), we denote
the list of coefficients with s = (s0, . . . , sn−1).

C[x]/(xn − 1) is an example of a polynomial algebra.
Boundary condition and signal extension. Every C[x]/pn(x)

has an associated (right) boundary condition which is obtained by
reducing xn mod pn(x) = −∑

0≤i<n βix
i. Similarly, the (right)

signal extension is given by reducing xm mod pn(x) form ≥ n.
In our example, pn(x) = xn − 1, i.e., xn mod xn − 1 = 1 is

the cyclic boundary condition. Further, xm mod xn−1 = xmmod n,
i.e., a periodic signal extension.

Convolution. The convolution associated with C[x]/pn(x) is
the multiplication h(x)s(x)mod p(x).

In our example h(x)s(x) mod xn−1 is equivalent to the circular
convolution of the coordinate sequences h and s [3].

Spectrum and Fourier transform. We assume pn(x) has pair-
wise distinct zeros α = (α0, . . . , αn−1). Then the Fourier trans-
form associated with C[x]/pn(x) is given by the Chinese remainder
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x0 x1 x2 xn−3 xn−2 xn−1

Fig. 1. The structure imposed on the signal by the polynomial alge-
bra C[x]/(xn − 1) and hence by the DFT.

theorem [2], which decomposes it into a Cartesian product of one-
dimensional polynomial algebras:

F : C[x]/pn(x) → ⊕
0≤k<n C[x]/(x− αk),

s(x) �→ (s(α0), . . . , s(αn−1)).
(3)

This F is a linear mapping (even an isomorphism of algebras) and
(s(αk))0≤k<n is called the spectrum of s(x). Hence, with respect to
the basis b of C[x]/pn(x) and (x0) = (1) in each of the C[x]/(x−
αk) it is represented by a matrix (obtained by evaluating all basis
elements in b at all zeros in α), which has Vandermonde structure:

F = [α�
k]0≤k,�<n. (4)

Note that this class of transforms does not contain the discrete cosine
and sine transforms, which can be captured in the algebraic frame-
work by using Chebyshev polynomials [6, 4].

In our example, the zeros of xn − 1 are αk = ωk
n, ωn =

exp(−2πj/n). Hence F = [ωk�
n ]0≤k,�<n = DFTn is exactly

the discrete Fourier transform, i.e., the yk in (2) are computed as
y = Fs, y = (y0, . . . , yn−1).

Visualization. The operation of x on the basis b of C[x]/pn(x)
can be represented by a graph. E.g., in our example pn(x) = xn−1,
we obtain the directed circle in Fig. 1. Note how the graph captures
the boundary condition xn = x0. Intuitively, the graph is the struc-
ture imposed on a signal s by the polynomial algebra.

Fast algorithms. Every general Fourier transform F in (4) is
a Vandermonde matrix. Hence, y = Fs can be computed using
only O(n log2(n)) operations [7]. In the case of the DFT, even
O(n log(n)) is possible.

3. ALTERNATIVE DISCRETE FOURIER TRANSFORMS

Problem statement. We are interested in finding polynomial alge-
brasC[x]/pn(x) such that the set of zeros of pn converges to the unit
circle as n goes to infinity. The theory in Section 2 yields for each
choice of pn(x) the associated notions of signal extension, convo-
lution, spectrum, and Fourier transform. By construction, the latter
will approach the DTFT in (1) as n goes to infinity, just as the DFT
(which arises from the special case pn(x) = xn − 1) in (2) does.

We will use the following definition.

Definition 1 Let {pn(x) | n ≥ 0} be a sequence of complex poly-
nomials of increasing degree deg(pn) = n. We say that z ∈ C is a
limit of zeros for this sequence if there is a sequence {zn | n ≥ 0}
such that pn(zn) = 0 and lim

n→∞
zn = z.

As an example, the limits of zeros of the sequence given by
pn(x) = xn − 1 are precisely all points on the unit circle. We note
that we can extend the above definition to any sequence {qn(x)}
of polynomials of increasing degrees not necessarily equal to their
index.

Main theorem. The main result of this paper is the follow-
ing theorem, which yields a large class of sequences of polynomi-
als whose zero sets converge to the unit circle. We determine and
experimentally test the associated alternatives to the DFT later.

Theorem 1 Let

qn(x) = ak(x)xkn + ak−1(x)x(k−1)n + . . . + a1(x)xn + a0(x),
(5)

where ai(x) ∈ C[x] and a0, ak �= 0. Then, z ∈ C is a limit of zeros
if and only if one of the following holds:

(i) |z| = 1.

(ii) |z| < 1 and a0(z) = 0.

(iii) |z| > 1 and ak(z) = 0.

In other words, Theorem 1 states that the limits of zeros of the poly-
nomial sequence in (5) is the entire unit circle, plus possibly finitely
many additional points, namely the roots of a0(x) inside the unit
circle and the roots of ak(z) outside the unit circle.

This result can be readily extended by combining such families
of polynomials, which yields the following corollary.

Corollary 1 Let pn(x) =
∑k

i=0 ai(x)x�
i(n−d)

k
� with ai(x) ∈ C[x]

and a0, ak �= 0, d = deg(ak). Then z ∈ C is a limit of zeros for
this sequence if and only if one of (i)–(iii) in Theorem 5 holds.

pn(x) = xn − 1 is a special case of the sequence in Corollary 1.
To prove Theorem 1, we use a theorem from Beraha, Kahane,

and Weiss [1] explained next.
The Beraha-Kahane-Weiss theorem. Suppose {qn | n ≥ 0}

is a sequence of polynomials satisfying them-th degree recursion

qn+m(x) = −
m∑

j=1

fj(x)qn+m−j(x), (6)

where the fj ∈ C[x] are polynomials. For each x ∈ C, (6) is an
ordinary linear recurrence for the numbers qn(x), n ≥ 0. With this
observation, we can solve (6) following the standard procedure for
linear recurrences [8], except that the results depend on x.

The characteristic equation associated with (6) is

Qx(λ) = λm +
m∑

j=1

fj(x)λm−j = 0. (7)

Let λ1(x), . . . , λm(x) be them zeros of ofQx. If the λj(x) are
pairwise distinct for a particular x, then qn(x) has the form

qn(x) =
m∑

j=1

αj(x)λj(x)n, (8)

where the αj are determined by solving a system ofm linear equa-
tions obtained by letting n = 0, 1, . . . , m − 1. If the λj(x) are not
pairwise distinct, (8) is adjusted in the usual way [8, appendix A].

We assume that the following two nondegeneracy conditions are
satisfied:

• {qn} does not satisfy a recursion of degree less thanm.

• There are no i, j such that λi(x) ≡ ωλj(x) for a constant ω
with |ω| = 1.

Under these conditions, the following theorem holds.

Theorem 2 A point z ∈ C is a limit of zeros of {qn} if and only if
the λj(z) can be ordered such that one of the following holds:

(i) |λ1(z)| > |λj(z)|, 2 ≤ j ≤ m, and α1(z) = 0.
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(ii) |λ1(z)| = |λ2(z)| = . . . = |λl(z)| > |λj(z)|, l + 1 ≤ j ≤
m, for some l ≥ 2.

Proof of Theorem 1. To apply Theorem 2, we show that our
polynomial sequence (5)

• satisfies a linear recursion,
• allows for a simple computation of the roots λj(x) and of the
coefficients αj(x) in (8), and

• satisfies the nondegeneracy conditions.

Lemma 1 Let {qn(x)} be the sequence defined in (5) and let I =
{i | 0 ≤ i ≤ k, ai(x) �= 0} = {i1, . . . , im}, which we assume in
increasing order. This implies i1 = 0, im = k. Then {qn(x)} satis-
fies the following recurrence of orderm = |I |, and no recurrence of
smaller order:

qn(x) = −
m∑

j=1

fj(x)qn−j(x), (9)

where the polynomials fj are defined as

fj(x) = (−1)j
∑

J⊂I,|J|=j

∏
�∈J

x�. (10)

Further, the characteristic equation takes the simple form

Qx(λ) = λm +

m∑
j=1

fj(x)λm−j =
∏
i∈I

(λ− xi), (11)

which implies λj(x) = xij ; hence the nondegeneracy condition is
satisfied. Comparing (8) with (5), this also shows αj(x) = aij

(x).
In particular, the recurrence for the qn does not depend on the

ai(x) in (5); the ai will affect only the initial conditions.

Proof. First we prove that {qn(x)} indeed satisfies the relation above
by induction onm = |I |.

Ifm = 1 (implying k = 0) the statement holds, since qn(x) =
a0(x) = qn−1(x), f1(x) = −1, and Qx(λ) = λ− 1.

Suppose now that the statement is true form − 1 ≥ 1. We will
prove it also holds for m (implicitly, m ≥ 2 and therefore k > 0).
Let Ik = I \ {k} �= ∅ (i.e., I without its largest element) and

rn−1(x) = qn(x)− xkqn−1(x) =
∑
i∈Ik

bi(x)xi(n−1), (12)

where for all i ∈ Ik, bi(x) = ai(x)(xi − xk) �= 0. Define f̃j(x) =
(−1)j

∑
J⊂Ik,|J|=j

∏
�∈J

x�, where 1 ≤ j ≤ m− 1. As |Ik| = m− 1,

by applying the induction hypothesis to the sequence {rn}, we find

rn−1(x) =−
m−1∑
j=1

f̃j(x)rn−1−j(x)

=− f̃1(x)qn−1(x)−
m−1∑
j=2

(f̃j(x)− f̃j−1(x)xk)qn−j(x)

+ f̃m−1(x)xkqn−m(x).

We conclude the proof of the first claim in our lemma by observ-
ing that −f̃1(x) = −f1(x) − xk, f̃m−1(x)xk = −fm(x), and
−f̃j(x) + f̃j−1(x)xk = −fj(x) for 1 < j < m, which implies

qn(x) = rn−1(x) + xkqn−1(x) = −
m∑

j=1

fj(x)qn−j(x). (13)

� � � � � � � � � � �

-1

2.5

x0 x1 x�n/2� xn−1 xn

Fig. 2. The structure imposed on the signal by C[x]/(xn −
5
2
x�n/2� + 1) and its associated Fourier transform.

To show that {qn} does not satisfy any recursion of order smaller
than m, we use proof by contradiction but omit the details due to
space limitations. �

At this point we have shown that Theorem 2 is applicable to (5).
To complete the proof of Theorem 1 we inspect which points satisfy
one of the two conditions in Theorem 2. If for a z ∈ C, exactly one
of |λj(z)| = |zij | is maximal, then |z| �= 1. In the case |z| > 1,
we know |zk| > |zi|, for i ∈ I \ {k}, and so z is a limit of zeros
for {qn} if and only if ak(z) = 0. In the case |z| < 1, we have
1 = |z0| > |zi|, for i ∈ I \ {0} and z is a limit of zeros if and
only if a0(z) = 0. This completely handles the first condition in
Theorem 2. Alternatively, if for z ∈ C, there are i, j ∈ I , i �= j,
such that |zi| = |zj |, then necessarily |z| = 1. Since for all z on the
unit circle 1 = |zi|, i ∈ I , we conclude that any such point is a limit
of zeros for {qn}. This completes the proof of Theorem 1.

Associated Fourier transforms. For each polynomial sequence
pn of the form considered above, and hence polynomial algebra
C[x]/pn, the general theory from Section 2 provides the associated
notions of boundary condition and signal extension (which will not
be periodic in general), convolution, spectrum, and Fourier trans-
form. The latter will be an alternative to the DFT, and has a fast
algorithm due to its Vandermonde structure (Section 2).

4. EXAMPLE AND EXPERIMENTS

Example. As a first example, we consider the polynomials pn(x) =

xn − 5
2
x�n/2� + 1, which match Corollary 1, and apply the theory

in Section 2.
The boundary condition inC[x]/pn is given by xn = 5

2
x�n/2�−

1, which yields the visualization in Fig. 2. Convolution is the mul-
tiplication of polynomials h(x)s(x) mod pn(x). The Fourier trans-
form F in (4) is determined by the zeros of pn. For even n = 2m
they can be explicitly computed as

α = (
m
√

2w−m/2+k
m ,

1
m
√

2
w−m/2+k

m )1≤k≤m,

where we ordered the zeros by increasing angle in (−π, π]. The root
distribution for n = 20, 50, and 80 is shown in Fig. 3(b) below.

Hence the Fourier transform in the case n = 2m becomes

F2m = [2
(−1)kl

m w
(� k

2
�+1−m

2
)l

m ]0≤k,l<2m. (14)

Experiments. For our experiments, we consider four sequences
of polynomials; the first is associated with the DFT:

pn(x) = xn − 1, (15)

pn(x) = xn − 5
2
x�n/2� + 1, (16)

pn(x) = (4x3 + 1)xn−3 + (5x2 + 1)x�
n−3

2
� + (7x5 + 1), (17)

pn(x) = (2x3 + 3)xn−3 − (x5 − 2). (18)

In each case, we numerically compute the root set of pn(x) for
n ∈ {20, 50, 80}, construct the corresponding Fourier transform,
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(a) pn(x) = x
n
− 1

(b) pn(x) = x
n
−

5
2
x
�n

2
� + 1

(c) pn(x) = (4x
3 + 1)xn−3 + (5x

2 + 1)x�
n−3

2
� + (7x

5 + 1)

(d) pn(x) = (2x
3 + 3)xn−3

− (x5
− 2)

Fig. 3. Roots of polynomials pn(x) for n = 20, 50, and 80.

and apply it to the first n coefficients of the sample signal shown in
Fig. 4, which is one row of a gray-scale image.

According to Theorem 1, all roots of the polynomial sequences
(15) and (16) converge to the unit circle. The sequence (17) has
five limits of zeros inside the unit circle: zk = 5

√
1/7eπi(2k+1)/5,

0 ≤ k ≤ 4. The sequence (18) has three limits of zeros outside the
unit circle: zk = 3

√
3/2eπi(2k+1)/3, 0 ≤ k ≤ 2. This is confirmed

by Fig. 3, which shows the root sets for n ∈ {20, 50, 80}.
In each case we order the zeros of pn(x) by increasing angle in

(−π, π]. For the DFT (pn(x) = xn−1), this means that the yk in (2)
are ordered as y n

2
+1, . . . yn−1, y0, . . . y n

2
, i.e., the DC component is

in the center.
Fig. 5(a)-5(b) shows, for n ∈ {20, 80}, the four Fourier trans-

forms applied to the signal in Fig. 4. We observe that the spectra
become similar for n = 80 as expected. In the last case, the three
limits of zeros outside the unit circle make the three associated spec-
tral values unbounded as n increases. In contrast, the five limits of
zeros inside the unit circle in the third case do not cause this behav-
ior.

5. CONCLUSION

The question we addressed in this paper is arguably fundamental to
signal processing: why do we use a periodic signal extension and
hence a DFT for finite length discrete-time signals? We showed that

0 100 200 300 400 500
0

200

400

Fig. 4. Sample signal s.

C[x]/xn−1

C[x]/xn−2.5x⎣n/2⎦+1

C[x]/(4x3+1)xn−3+(5x2+1)x⎣(n−3)/2⎦+(7x5+1)

C[x]/(2x3+3)xn−3−(x5−2)

(a) n = 20

C[x]/xn−1

C[x]/xn−2.5x⎣n/2⎦+1

C[x]/(4x3+1)xn−3+(5x2+1)x⎣(n−3)/2⎦+(7x5+1)

C[x]/(2x3+3)xn−3−(x5−2)

(b) n = 80

Fig. 5. Magnitudes of the Fourier transform y = Fs forC[x]/pn(x),
n = 20, 80, and s in Fig. 4.

if only asymptotic convergence to the DTFT is required, there are in-
deed many choices, each of which with its own signal extension and
notion of convolution. Further, each of these alternative transforms
possesses fast algorithms, which makes them in principle useful for
applications. The question of these applications still remains.
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