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Abstract— This paper presents a simple method to im-

prove the frame-bounds-ratio of perfect reconstruction (PR)

oversampled filter banks (FBs) by adjusting the gain of each

subband filter. For a given analysis PRFB, a finite convex

optimization algorithm is presented to redesign the subband

gains such that the frame-bounds-ratio of the FB is minimized.

The algorithm also provides an effective way to compute

the frame bounds. Examples show the effectiveness of the

presented method.

Index Terms— Oversampled filter banks, frame bounds,

convex optimization, linear matrix inequality

I. INTRODUCTION

Frame theory was first introduced by Duffin and Schaeffer

in the early 1950s to deal with the problems in nonharmonic

Fourier series [1]. Its rapid development and application in

recent years are mainly in the context of wavelets, Gabor

systems and oversampled filter banks (FBs) [2], [3], [4]. After

the elegant works of many researchers [4], [5], [6], [7], [8], [9],

the relations between oversampled filter banks, Gabor frames

and wavelets are now well-known. Except for some special

types of frames, eg, Weyle-Heisenberg (WH) frame with

integer sampling factor, there are no explicit and numerically

efficient ways to find the dual frame for a given analysis

frame. In the mathematical literature, a large number of works

have been devoted to the ‘good’ approximation algorithms

for computing the tightest frame bounds and canonical dual

[8], [10]. Instead of finding the canonical dual, other duals

achievable in an efficient way are proposed in [11]. The

computation of frame bounds and dual frames for the cosine

modulated and other special forms of FBs are studied in [12],

[13]. In [14], the frames generated by general oversampled FBs

are studied and the state space based explicit and numerically

efficient formulae are presented to compute frame bounds and

dual frames without approximation.

FBs play an important role in multirate digital signal

processing, subband coding and communication. For a given

FB generating a frame, it is pointed out in [12], [15] that in

general, the smaller the ratio β/α, the better the numerical

properties of the FB, where β and α are respectively the

tightest upper and lower frame bounds. In line with this

result, para-unitary FB corresponding to the tight frame with
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β/α = 1 is particularly popular and widely studied in the

literature [7], [16]. However, it is often required in practice

that the subband filters be designed for other specifications

such as good frequency selectivity. Therefore, the resulting

analysis FB may not be paraunitary and may have a large

condition number (frame-bound-ratio). To improve the numer-

ical efficiency of the approximation algorithm, preconditioning

technique is used in [17].

This paper studies the preconditioning problem of improv-

ing the frame-bound-ratio for a given frame generated by

oversampled FB. In terms of oversampled FBs, the setup is

quite general - the filters could be any type, FIR or IIR, as long

as they are stable. More specifically, for a given analysis FB

generating a frame, we show how to adjust the gain of each

subband filter such that the frame-bound-ratio is minimized.

In addition to its significance for frame theory, this problem is

also very important for various signal processing applications,

especially in the situations where the coefficients of analysis

filters cannot be changed arbitrarily except their gain.

For a given analysis FB, we will provide a numerically

efficient algorithm to redesign the subband gain such that the

frame-bound-ratio is minimized. The theoretical tool used is

the celebrated KYP lemma, while the numerical tool is the

LMI optimization. As a byproduct, the algorithm can be used

to compute the tightest frame bounds, as well as to find out

whether an analysis FB constitutes a frame (yes, if the upper

frame bound is finite and the lower frame bound is greater

than 0; and no, otherwise.)

II. PRELIMINARIES

This sections collects some important results on oversam-

pled FBs from [5], and reviews the state-space computational

method for analysis and design of frames with oversampled

FBs. See [3], [5], [6], [18], [14] for more details.

Consider the N -channel oversampled FB with decimation

factor M . Let Hk(z) and Fk(z), k = 0, . . . N − 1, be

the transfer functions of the analysis and synthesis filters,

respectively. Write Hk(z) and Fk(z) as

Hk(z) =
∞∑

n=−∞
hk[n]z−n and Fk(z) =

∞∑
n=−∞

fk[n]z−n,

where hk(n) ∈ C and fk(n) ∈ C are impulse response

coefficients of Hk(z) and Fk(z), respectively. Denote E(z) ∈
C and R(z) ∈ C the polyphase matrix of the analysis
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filters {Hk(z)} and the synthesis filters {Fk(z)} respectively,

where Eij(z) =
∑∞

n=−∞ hi[nN − j]z−n, and Rji(z) =∑∞
n=−∞ fi[j − nN ]z−n, for i = 0, . . . , N − 1 and j =

0, . . . ,M − 1.
A transfer matrix E(z) =

∑∞
i=−∞Eiz

−i ∈ C
N×M is

called causal if Ei = 0 for all i < 0, is called anti-causal

if Ei = 0 for all i > 0, and is called strictly anti-causal if

Ei = 0 for all i ≥ 0.
A rational causal transfer matrix E(z) =

∑∞
i=0 Eiz

−i ∈
C

N×M can always be expressed as E(z) = D + C(zI −
A)−1B, where A ∈ C

n×n, B ∈ C
n×M , C ∈ C

N×n and

D ∈ C
N×M . The matrix quadruple (A,B, C, D) is called a

state space realization of E(z). The realization (A,B,C, D)
is minimal if the dimension of A is minimal. And (A,B) is

called controllable if
(∑n−1

i=0 AiBB∗(A∗)i
)
∈ R

n×n is a full

rank matrix. These are standard results in linear systems, see

e.g. Chapter 13 of [16] for details. The computation procedure

of (A,B,C, D) for a given oversampled FB can be found in

[14].

Define

hk,m[n] = h∗k[mM − n], k = 0, . . . , N − 1, m, n ∈ Z.

The set {hk,m[n]} is a frame on l2(Z) if there exist positive

numbers α and β such that

α ‖x‖2 ≤
∑
k,m

|< x, hk,m >|2 ≤ β ‖x‖2 ,∀x ∈ l2(Z).

The dual frame of {hk,m[n]} is the frame fk,m[n] = fk[n −
mM ], k = 0, . . . , N − 1, m, n ∈ Z, such that any x ∈ l2(Z)
has a convergent representation

x =
∑
k,m

< x, hk,m > fk,m. (1)

Among all dual frames which satisfy (1), the one with mini-

mum l2-norm is called the canonical dual frame and is given

by

fk,m[n] = (S−1hk,m)[n]

where S is the frame operator defined as

Sx =
∑
k,m

< x, hk,m > hk,m.

If {hk,m[n]} is a frame on l2(Z), then PR can always be

achieved and the synthesis FB providing PR corresponds to

a dual frame of {hk,m[n]}. The ratio β
α is a very important

measure of the numerical properties of the FB. In general,

the smaller the ratio, the better numerical stability of the

reconstruction. For this reason, the tight frames, or para-

unitary FBs, which achieves the minimum β
α = 1 are widely

used in practice. However, other properties such as frequency

selectivity should also be considered. Usually, it is difficult to

design FBs with good frequency selectivity, simple structure

and numerical stability simultaneously and a great deal of

research have been devoted to this issue. Next section will

present a simple optimization method to improve the ratio β
α

for a given FB by adjusting the gain of each filter without

changing the shape of its frequency response.

For an analysis FB {Hk(z)} with polyphase matrix E(z),
recall the following results from [5], [6].

Lemma 1: {Hk(z)} implements PR if and only if its

polyphase matrix E(z) is of full column rank on the unit

circle. Moreover, E(z) satisfies α = ess infω σ(E(ejω)) and

β = ess supω σ̄(E(ejω)), where σ and σ̄ denote the smallest

and largest singular values, respectively.

III. IMPROVING THE FRAME-BOUND-RATIO

This section presents a simple method to improve the frame-

bound-ratio for a given FB. Consider the following prob-

lem: Given an oversampled analysis FB with filters Hk(z),
k = 0, 1, . . . , N − 1, find positive numbers r0, r1, . . . , rN−1

which minimize the frame-bound-ratio of the new analysis FB

consisting of rkHk(z).
Define Γ := diag(r0, r1, . . . , rN−1). For a given analysis

oversampled FB {Hk(z)}, the lower and upper frame bounds

of the new FB {rkHk(z)} are denoted as α(Γ) and β(Γ),
respectively. Then the problem can be described as follows.

Problem 1: For a given FB {Hk(z)}, find Γ such that
β(Γ)
α(Γ)

is minimized.

The above optimization problem is solved below step by

step.

Lemma 2: Let E(z) be the polyphase matrix of a given

oversampled analysis FB {Hk(z)}. Then the polyphase matrix

of the new FB {rkHk(z)} is given by EΓ(z) = ΓE(z), and

its lower and upper frame bounds are given respectively by

α(Γ) = ess inf
ω

σ(EΓ(ejω)) (2)

β(Γ) = ess sup
ω

σ̄(EΓ(ejω)). (3)

Proof: It follows from direct computation that

EΓij(z) =
∞∑

n=−∞
rihi[nN − j]z−n

= ri

∞∑
n=−∞

hi[nN − j]z−n = riEij(z).

Therefore, EΓ(z) is given by⎡
⎢⎣

r0E00(z) · · · r0E0,N−1(z)
...

...

rN−1EN−1,0(z) · · · rN−1EN−1,N−1(z)

⎤
⎥⎦ = ΓE(z).

By Lemma 1, the lower and upper frames bounds of ΓE(z)
are given by (2) and (3), respectively.

Theorem 1: Let E(z) be of full column rank on the unit

circle. Then the following two optimization problems are

equivalent

(i) min
Γ

β

α
subject to αI ≤ E∗Γ(ejω)EΓ(ejω) ≤ βI. (4)

(ii) min
Γ

γ

subject to I ≤ E∗Γ(ejω)EΓ(ejω) ≤ γI. (5)

Proof: If Γ is a solution to (i), then Γ̄ = Γ
α and γ = β

α
is a solution to (ii). If Γ is a solution to (ii), then it is also a

solution to (i) with β = γ and α = 1.
The problems in Theorem 1 involve infinite dimensional

optimization since ω ∈ [0, 2π). An approximated solution can

be found by sampling ω on a fine grid and then solving the
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finite dimensional optimization problem with the sampled data.

Such an approximation method is presented in the literature

[12], [13] for the computation of frame bounds. To obtain

an accurate result, the sampling grid must be dense enough,

which requires a tedious spectral computation of a large

number of sampled matrices. Moreover, the approximation

error cannot be quantified and predicted precisely before the

sampling and computation. As shown below, the above infinite

dimensional optimization problem can be formulated as an

equivalent finite dimensional convex optimization problem in

terms of linear matrix inequalities (LMIs), for which effective

numerical methods exist [19], [20]. The key technique to

the LMI formulation is Kalman-Yakubovich-Popov (KYP)

Lemma given in the sequel, which has been known as one

of the most fundamental and useful tools in system theory,

network analysis and filter design [21], [22].

Lemma 3: Given A ∈ C
n×n, B ∈ C

n×M and

G ∈ C
(n+M)×(n+M) with (A,B) being controllable and

det(ejωI − A) �= 0 for ω ∈ [0, 2π), there exists a Hermitian

matrix P = P ∗ ∈ C
n×n such that the following two

inequalities are equivalent:

[
(ejωI −A)−1B

I

]∗
G

[
(ejωI −A)−1B

I

]
≤ 0, ∀ω, (6)

G +
[

A∗PA− P A∗PB
B∗PA B∗PB

]
≤ 0. (7)

The corresponding equivalence for strict inequalities holds

even if (A,B) is not controllable.

We are now ready to present the main result of this paper.

Theorem 2: Given E(z) = D+C(zI−A)−1B with E(ejω)
being full-column rank for ω ∈ [0, 2π). The optimal solution

to Problem (ii) in Theorem 1 is given by the following

optimization

min
Γ,P,Q

γ (8)

subject to

[
A∗PA− P A∗PB

B∗PA B∗PB − γI

]

+
[

C∗

D∗

]
Γ2

[
C D

] ≤ 0 (9)

[
A∗QA−Q A∗QB

B∗QA B∗QB + I

]

−
[

C∗

D∗

]
Γ2

[
C D

] ≤ 0 (10)

where P = P ∗ and Q = Q∗.
Proof: It follows from Theorem 1 that the inequalities

(5) can be written as

E∗(ejω)Γ2E(ejω) ≤ γI (11)

E∗(ejω)Γ2E(ejω) ≥ I. (12)

Using E(z) = D + C(zI −A)−1B gives

E∗(ejω)Γ2E(ejω)− γI

=
[
D + C(ejωI −A)−1B

]∗
Γ2

[
D + C(ejωI −A)−1B

]
−γI

=
[

(ejωI −A)−1B
I

]∗ [
C∗Γ2C C∗Γ2D
D∗Γ2C D∗Γ2D − γI

]

·
[

(ejωI −A)−1B
I

]
. (13)

According to KYP Lemma,

[
(ejωI −A)−1B

I

]∗ [
C∗Γ2C C∗Γ2D
D∗Γ2C D∗Γ2D − γI

]

·
[

(ejωI −A)−1B
I

]
≤ 0

if and only if there exists P = P ∗ such that

[
C∗Γ2C C∗Γ2D
D∗Γ2C D∗Γ2D − γ2I

]

+
[

A∗PA− P A∗PB
B∗PA B∗PB

]
≤ 0. (14)

It is easy to check that the left hand side of inequality (14)

is the same as that of (9). Similarly it can be shown that (12)

holds if and only if there exists Q = Q∗ such that (10) holds.

This completes the proof.

Minimizing γ subject to the constraints (9) and (10) is

a standard problem of linear objective optimization sub-

ject to LMI constraints. which can be readily computed by

the interior-point algorithms implemented in MATLAB LMI

solvers [19], [20]. As summarized in the corollaries below,

Theorem 2 also presents an alternative way to compute the

frame bounds.

Corollary 1: For an oversampled analysis FB {Hk(z)}, let

E(z) = D + C(zI −A)−1B be the state space realization of

its polyphase matrix. Then the optimal lower frame bound α∗

can be computed by the following convex optimization

max
Q

α (15)

subject to

[
A∗QA−Q A∗QB

B∗QA B∗QB + αI

]
−

[
C∗

D∗

] [
C D

] ≤ 0.

(16)

Corollary 2: For an oversampled analysis FB {Hk(z)}, let

E(z) = D + C(zI −A)−1B be the state space realization of

its polyphase matrix. Then the optimal upper frame bound β∗

can be computed by the following convex optimization

min
P

β (17)

subject to

[
C∗

D∗

] [
C D

]
+

[
A∗PA− P A∗PB

B∗PA B∗PB − βI

]
≤ 0.

(18)
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IV. NUMERICAL EXAMPLES

This section presents some examples to illustrate the design

method presented in Section III.

Example 1. Consider the real-valued oversampled FB with

N = 3, M = 2 and H0(z) = 0.4208z+0.4208
z−0.1584 , H1(z) =

0.2452z2−0.2452
z2+0.5095 , and H2(z) = H0(−z). The frame bounds

of this example have been computed in [14] using the Ricatti

equation method and are recomputed here using Corollaries

1-2 for comparison. The optimal frame bounds computed are

α∗ = 0.4522 and β∗ = 1.2383, therefore the frame-bound-

ratio is γ = β∗

α∗ = 2.7381. Using Theorem 2, the optimal

frame-bound-ratio is improved to γ∗ = 1.3809 by using the

gains [ r∗0 r∗1 r∗2 ] = [ 1.6619 0.8497 1.6619 ].
Example 2. Consider the analysis oversampled lattice struc-

ture FB with N = 8,M = 6 given in [25]. The optimal

frame bounds computed with Theorem 2 and Corollaries 1

and 2 are α∗ = 0.7983 and β∗ = 1.2793, therefore the

frame-bound-ratio is γ = β∗

α∗ = 1.6026. Using Theorem 2,

the optimal frame-bound-ratio is improved to γ∗ = 1.3809
by using the gains [ r∗0 r∗1 r∗2 r∗3 r∗4 r∗5 r∗6 r∗7 ] =
[1.2387 1.1696 1.0772 1.1062 1.1152 1.1139 1.0189 1.0530].

Example 3. In this Example, we re-compute the frame-

bound-ratio of various biorthogonal FBs [24] and compute

the minimal ratio achieved by adjusting the gains. Results

are shown in Table 1. We see that the improvement is not

significant. This is because all the FBs are critically-sampled.

If we consider two-channel nonsubsampled FBs as in Section

IV of [6], the improvement is quite significant. The results are

shown in Table 2.

Table 1: Results of critically-sampled biorthogonal FBs.

Filter banks β/α γ∗ r∗0 r∗1
Le Gall 4-4 4 4 1 1

Le Gall 3-5 2.087 2 1 1.0215

Vetterli 18-18 2.3268 2.2854 1 1.0091

Egger-Li 4-12 4.9203 4 1 1.1091

Egger-Li 3-9 2.1204 2 1 0.9713

Moulin 5-11 10.6709 8.0052 1 0.8657

Moulin 1-3 6 5.8284 1 1.1547

MSC 10-18 1.2658 1.2112 1 0.9780

MSC 14-26 1.2703 1.2297 1 0.9652

Table 2: Results of nonsubsampled FBs

Nonsubsample FBs β/α γ∗ r∗0 r∗1
Le Gall 4-4 4 2.1547 1 2

Le Gall 3-5 3.4170 1.3637 1 0.7773

Vetterli 18-18 3.1999 2.1235 1 0.9535

Egger-Li 4-12 3.2537 2.4479 1 0.7264

Egger-Li 3-9 2.3736 1.5687 1 1.1311

Moulin 5-11 6.0051 4.1718 1 1.7273

Moulin 1-3 3.6667 1 0 1

MSC 10-18 1.9527 1.1932 1 0.9828

MSC 14-26 1.9769 1.0861 1 1.0083

V. CONCLUDING REMARKS

The improvement of frame bounds ratio for PR oversampled

FBs is studied in this paper. Using KYP lemma, an LMI based

optimization algorithm is provided to compute the optimal

gain of each subband filter that minimizes the frame-bound-

ratio. Examples are given to demonstrate the effectiveness of

the algorithm. The results can also be applied to discrete-time

wavelet frames. Due to space limit, it is not included in this

paper and will be reported elsewhere.
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