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ABSTRACT

Owing to the lack of resolution of the measurement and the random-
ness inherent in the signal and the measuring devices, the measure-
ment noise is often signal-dependent. Although the statistical model-
ing of filterbank, wavelets, and short-time Fourier coefficients enjoys
immense popularity, transform-based estimation of signal is difficult
because the effects of signal-dependent noise permeate across multi-
ple coefficients and subbands. In this work, we show how a general
class of signal-dependent noise can be characterized to an arbitrary
precision in a Haar filterbank and Fourier representation. The struc-
ture of noise in the transform domain admits a variant of Stein’s un-
biased estimate of risk conducive to processing the corrupted signal
in the transform domain, and estimators involving Poisson processes
are discussed.

Index Terms— Fourier transform, filterbank, signal-dependent
noise, Bayesian estimation, Stein’s unbiased estimate of risk.

1. INTRODUCTION

Real-world sensing devices are subject various types of measure-
ment noise. For example, it is well known that the lack of resolu-
tion (e.g. quantization), randomness inherent in the signal (e.g. pho-
ton/packet arrival), and variabilities in the measuring devices (e.g. ther-
mal noise, electron leakage) contribute to a significant degradation
of signal. Estimation of the sequential data f € R given noisy
observations g € R therefore plays a prominent role in communi-
cation, signal processing, imaging, and MRI applications.

To illustrate the challenges in signal estimation problems, sup-
pose we adopt a Bayesian statistics point of view; that is, we model
the signals in terms of the prior probability distribution of the latent
variable (p(f)) and the likelihood of the observation conditioned on
the latent variable (p(g|f)). Bayesian statistical estimation and in-
ference techniques make use of the posterior probability, or the prob-
ability of the latent variable conditioned on the observation (p(f|g)),
which is proportional to the product of the prior probability distribu-
tion of the latent variable and the likelihood function. Motivated by
the prior knowledge and empirical studies, statistical modeling of the
latent variable in the linear transform domain has enjoyed tremen-
dous popularity—in particular, filterbank, wavelets, and short-time
Fourier transforms provide convenient platforms for specifying the
prior because their coefficients exhibit temporal and spectral locality,
sparsity, and energy compaction properties [1-5].

In this paradigm, the special case of additive white Gaussian
noise (AWGN) is studied almost exclusively because the posterior of
the transform coefficients is readily accessible when the likelihood
function has a closed form in the transform domain. The assump-
tion that the noise is AWGN, however, is inadequate for many real-
world applications because the measurement noise is almost always
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dependent on the rangespace of the signal f, effects of which per-
meate across multiple transform coefficients and subbands. For in-
stance, the number of electrons or photons encountered in a measur-
ing device during an integration period is a Poisson process g, | f S
P(fm) where fn, is the expected electron/photon count per integra-
tion period and it is proportional to the electric current or the light in-
tensity [6]. As the integration period increases, p(gm|f) converges
weakly to N'(fm, fm). In this paper, we consider a more general
likelihood model whose conditional variance of g.,|f is a function

of its conditional mean, E[g | £]. Thatis, gm|f =& N (gm, h(fm)?),
or

gm = fm + h(fm) em, M

where £,, "% N(0, 1) is independent of £, and h : R — R is the
standard deviation of noise as a function of fy,.

One existing strategy to address signal-dependent noise in (1)
is to design an invertible nonlinear operator v : RY — RY on
the observation that (approximately) decouples the signal and noise:
Y@y (f) ~ N(v(f),I) [7-9]. An AWGN-based signal estima-
tion technique is used to estimate v(f) given y(g), and the inverse
transform 1 (-) yields an estimate of f. Although this approach
modularizes the designs of v(-) and the estimator, the signal model
assumed for f no longer holds true for v(f) and the optimality of
the estimator in the new domain does not translate to optimality in
the rangespace of f. Alternatively, sufficient smoothness in f and
h(-) implies slowly changing noise variance. This motivates a local
AWGN model, where h( f,,)? is approximated with a constant over
a moving window, and an estimation method designed for AWGN is
used to estimate f within this window [10]. This approach is not ro-
bust to the singularities in f and noise variance estimation employs
heuristics to decouple the noise and the latent variable.

In this paper, we derive a novel and efficient representation of
signal-dependent noise in the Haar filterbank (HFT) and Fourier do-
mains with precision up to the K'th moment when h(-) is K-
differentiable. Though there exist other filterbank/wavelet transforms
with better frequency separation, the advantage to encoding the like-
lihood function in the transform domain (with asymptotic accuracy)
is that the posterior distribution of the latent variables is readily ac-
cessible. In light of this, we propose two strategies for manipulating
the corrupted signal in the transform domain. First, a maximum a
posteriori (MAP) estimator of the noise free coefficients is devel-
oped from the posterior distribution analysis. Second, the structure
of noise in the transform domain admits a variant of Stein’s unbiased
estimate of risk for a transform-based parametric estimator [11-13].

The rest of this paper is organized as follows. We show useful
properties of HFT and Fourier in Section 2. An asymptotic repre-
sentation of signal-dependent noise is derived in Section 3, and its
statistical interpretation are discussed in Section 4 before the con-
cluding remarks in Section 5. Due to page constraints, simulation
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results are regrettably reserved for future publications.

2. PERMUTATION IN TRANSFORM OPERATORS

In the following discussion, results obtained from the Propositions
2.1 and 2.2 below are subsequently used to prove our main result in
the Corollary 2.3. Let N = 2" be the length of f, e; € RY be the
jth standard basis, and = ®f, ® € RY*¥ is a linear orthogonal
transform. Let ¢p; € R™ be the jth column of ®, and define the
point-wise multiplication operator © as ¢; © ¢+ = diag(¢;)¢; =
diag(¢p;/) ;.

In the case that ® is a HFT matrix, we have
1 1
Py = L _1} ,

where ® is a Kronecker product. Note that P 1=& /N and &7 =
@, and +1 comprises all entries of ®. Let ¢; = ¢} € {£1}" be
the jth column of ® and G = {¢;|V;} be a set of all columns of ®.
Then we show that (G, ®) is an abelian group with some desirable
properties.

P=P® - -®Po
—_———

n times

Proposition 2.1. (abelian group) Suppose G = {¢p;|Vj} is a set
where ¢; is the jth column of HFT matrix ® € RN*N " Then
(G, ®) is an abelian group that is isomorphic to the quotient group
{Z/2Z}"™ under addition.

Proof. Hence forth, let the column index of HFT be represented us-

ing binary number § = (j1,--- ,jn)" € {Z/2Z}", where j+j' =
(j1+41, -, jn+jh)T. From the definition of ®,

= |y #9 [Ciyal ]

Then the following fact emerges:

@ © ¢j = diag(¢;)o;r

A (oo el Do

[ {oms ([eap] o) (feapes] o)}

By recursion,

1 1
;O @5 = {(71)%“;] ®--® {(,Wlﬂ'i} = ®jj-

This result immediately satisfies the axioms necessary to establish
that (G, ®) is an abelian group (closure, associativity, identity el-
ement, inverse element). The bijective map w : G — {Z/2Z}",
7(¢;) = j is a group isomorphism from (G, ®) to ({Z/2Z}", +)
because

(P + bj1) = (i) =3 +3 =n(d;) +7(ds).

O

On the other hand, the Fourier matrix can be expressed as a Van-

dermonde matrix: [®];, = e 2"UR/N where 71 = /N
and &7 = .

Proposition 2.2. (modulation) Suppose H = {¢;|Vj} is a set where
@, is the jth column of STFT matrix ® € RY*N. Then (H,®) is
an abelian group that is isomorphic to the integers modulo group

Z/NZ under addition.
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Proof. Hence forth, let the column index of STFT be represented
via modulus j € Z/NZ. From the definition of ®,

b; © @ = |2 THIVRNT =

As in the previous proof, this satisfies the axioms of abelian group,
and the bijective map p : H — Z/NZ, p(¢;) = j is a group
isomorphism from (H, ®) to (Z/NZ,+). O

Corollary 2.3. (commutativity) Suppose ® € RN*YN is a HFT or
Fourier matrix, and ¢; is its jth column as before. Then ® diag(¢;)

= P;®, where Pj is a permutation matrix whose kth row is e]-T+k.

Proof. Recall @ is symmetric. Then,
@ diag(¢;) = ¢>§;T diag(¢7) = |{o o 2
From Proposition 2.1 or 2.2,
® diag(¢p;) = qb;::{k = ef;k ® = P;®.

O
Note that Py is an identity matrix, and the above result naturally

extends to discrete cosine and short-time Fourier transforms.

3. NOISE MODEL IN TRANSFORM DOMAIN

Recall (1) and, acknowledging the abuse of notation, let h(f) in-
dicate an element-wise operation of h(-) : R — R on f. Then
the vectorized version of (1) is g|f ~ N (f,diag(h(f)?)). Let
x = P f be the ideal transform coefficients, and y = Pg is the
observed coefficients. Recall the inverse transform:

f=/N@Tz = (1/N)Y d5;.

The classical interpretation is that fo = (x0/N)¢g is the “approx-
imation” of f, where xo is the lowest frequency (scaling) coeffi-
cient of & corresponding to ¢y = (1, -, 1)T. Assuming sufficient
smoothness, we expand h(f) via the Taylor series about f,

g = f -+ diag (B(fa) + B (f)(F — fu) + - )e
= f +diag (h(xO/N)¢8 + h/(xo/N)(fd) + - )6,

where 1'(f) = dh/df etc.,and fa = f—fa = (1/N) 30, &;7;
is often regarded as the “detail” of f because it is a linear combina-
tion of the higher frequency coefficients of  only. Using the Taylor
series representation and the commutative property of the matrix ®
in Corollary 2.3, the transform of the observed signal g is:

y=f + ®diag ((ao/N)5 + S gy 4 e
J#0
=x+ (h(a:o/N) + hl(“}‘\][/m;xjpj —|—~~~><I>e
J
=x+ M(x)E. )



Here € = ®& ~ N(0, NI), and M (z) is a polynomial matrix:

K

= @ diag(h(f))@~" = lim

M(z) h(k)(mO/N) <M(w)>k,

kINk

where h®)(f) = d*h(f)/df* and M (z) = > jz0%iPj. When
the Taylor series is carried out to infinity, (2) asymptotically char-
acterizes the interaction between the signal and noise in (1) in the
transform domain, and it is exact when h®)(.) = 0,Vk > K for
some K. In practice, M () is approximated to the K'th order poly-
nomial. In fact, the existing practice of local AWGN modeling (as
described in Section 1) is the zeroth order polynomial approximation
of M (x); similarly, the Haar-Fisz algorithm is analogous to itera-
tively scaling y and by h(xo/N) ! [8,9]. However, the model in
(2) suggests that we can achieve a higher degree of precision.

4. STATISTICAL ANALYSIS AND ESTIMATION

4.1. Likelihood Function and Maximum A Posteriori Estimator

We managed to largely bypass the nonlinear function h(+) in (2) be-
cause y is now a polynomial function of . This admits a direct
manipulation of y based on the posterior distribution of the latent
variable as deduced from the the likelihood of observed coefficients.
That is, y|x ~ N (@, NM (z)M (z)"); and given a choice of the
prior p(x), the posterior distribution of  conditioned on y is:

p(ylz)p(z)
p(y)

—2)T (M ()M (2)T) Y (y—=z
_p(w)/p(y)exp (_(y  (M(@)M(@)) " (g ))
(2m)N/2|NM (z) M (z)T|1/2
p(w) = [ plylelp(e)de
—x T M ()M (x Ty-1 —x
_/p(m)exp<_<y )T (M( >2N< ¢ ))dm
B (2m)N/2|NM (z) M (z)T|*/2

p(zly) =

This posterior probability distribution gives rise to new techniques
for statistical inference and estimation. For example, the standard
form of MAP estimator is:

& = argmax p(z|y) = arg maxlog p(y|z) + log p(x)

Below, we sketch out a method to solve for the optimal « iteratively
using the Levenberg-Marquardt algorithm [14-16]. Given the cur-
rent estimate £ and a parameter ), the next iterate estimate is de-

fined in terms of the increment & = ™% — £°, where

&= (J7T+ A1) T logplyla™) + logp(a™)|.

Here, J is the Jacobian of log p(z|y) evaluated at &

J = [dlogn(zly) dlogp(zly) ]
dxg dzy z—gold
dlogp(zly) _ dlogp(ylz)  dlogp(z)
dxz; dx; dx;

—logp(y).

The derivative

dk’%@m is the sum of the following two quantities:
aJ

dlog |[NM (z)M (z)"| _1dM (z)
dz; = —2Tr | M(x) dz;

d(y — )" (M (z)M (x)") "' (y — =)

dz;
— 2] (M(@)M(2)") (4~ o)
~ 2y ) M) MO @ )") - o),
where
AM () _ W(ao/N) py W mo/N) Sy Py b

dxj o N
3’ #0

Combined with the first derivative of the prior p(), the implemen-
tation of this MAP estimator is straightforward.

4.2. Optimal Mean Estimator Selection for Poisson Process

Owing partly to Stein’s contributions to estimation theories, para-
metric estimators are widely popular [17-20]. The celebrated result
of Stein’s unbiased risk estimate (SURE) for a vector f states that
N (fm,1), the expected squared

=g+ vo(g)is

given a noisy observation g|f "~
error of a parametric estimator fo(g)

E[|lf ~ falg)

where Vg - ¢g(g) = ZL 297 L by ; and e = (Ye,0,- - ,Pa,n)T.
The optimal choice of parameter € in g is therefore the minimizer
of this function. The obvious advantage to this approach is that 6 can
be adapted to f even when its smoothness is unknown [18]. A more
general form is developed by Raphan et al. [21]

‘We work with (2) to derive a variant to the SURE quantity above
that is amenable to estimating the mean of the Poisson process in the
HFT and Fourier domains [22,23].

| #] = N+ B[lwo (@) +29, - a(g) | £

Proposition 4.1. Suppose ® is the HFT or Fourier matrix, h(fm,) =
22 and M (x) = ® diag(h(® 'x))® . Ify = = + M(x)é
then E[M (x)" M (x)] = E[M (y)" M (y)].

Proof. E[M (y)" M (y)]
= E[® 7 diag(h(®"'y))" ®" ® diag(h(®'y))®"]
= NE[®7 diag(h(g))’® "] = N® 7 diag(E[f + h(f)e])®"
= E[®" diag(h(f))" " ® diag(h(f))®"]
= E[M (z)" M (z)].
O

Corollary 4.2. (modified SURE) Suppose gm|f e P(fm), and
x=®f y=®g. Let To(y) = y + Yo (y) be a weakly differen-
tiable parametric estimator of © such that die(y)/dy is piece-wise
constant. Then the expected risk is:

Blllz = 20w)I|2] = B[wo(y) do(w)|e]

+Tr(E[M(y)TM( )) ](NI+]%]d¢ci9( )))

where M (x) is as defined in (2).
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Proof. The mean squared error can be rewritten as: [6]
Ellle - @o(y)|?|2] = E[IM (@) + o ()| |] 1
= B[&" M (@) M(@)é + 28" M(@) "o (y) + w0 (1) $o(y)|]. "

By Proposition 4.1, the first term equals to NTr(E[M (y)” M (y)|x]).

To reconcile the second term, we borrow the following from Stein:

_ L

E[éTng(é)‘a:] - NE[Vg : ng(é)M, o

where 175 : RY — RY is a weakly differentiable function. Recall [10]
do(y)/dy is a constant, and suppose we set mg(€) =
M (x) pg(x + M (x)é). Then using chain rule:

B[e" M@ bow)]z] = FE[X j=ms(@)a] -
HEEDER @,

; )

%E[Z ejTM(:c)T (L#;;y)) M (x)e;

1 J dipe (y) -
- e[| 229
N (y) M(y)|z dy
where the properties of matrix trace and the results of Proposition — [14]
4.1 are used in the last step. O
5. CONCLUSION [15]

This paper addressed the transform domain modeling of signal-dependent
noise. The noise-corrupted signal has an asymptotic representation [16]
in the transform domain when h(+) is a K -times differentiable func-
tion. The posterior distribution of these filterbank or Fourier coeffi-
cients is readily accessible because both the prior and the likelihood
are encoded in the transform domain, and the maximum a posteri-
ori estimator naturally stems from such analysis. The structure of
noise in the transform domain admits a variant of Stein’s unbiased
estimate of risk conducive to transform-based processing of a signal [18]
corrupted by signal-dependent noise.

(17]
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