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ABSTRACT

The problem of estimating a spectral representation of damped sinu-
soidal signals from a gapped data set is of considerable interest in
several applications. In this paper, we propose a filterbank approach
to provide such an estimate, by first reconstructing the missing data
samples assuming that the spectral content of the missing data is
similar to that of the available samples, and then forming a spectral
representation of the reconstruced data set as a function of frequency
and damping. Numerical examples illustrate the benefits of the pro-
posed estimator as compared to currently available methods.

Index Terms— Spectral estimation, missing data, damped sinu-
soids

1. INTRODUCTION

Spectral analysis is a classical problem, finding application in a wide
variety of fields, e.g., astronomy, communications, economics, med-
ical imaging, and radar; consequently, there is a wealth of research
pertaining to the problem (see, e.g., [1] and the references therein).
The majority of the work focuses on estimating the spectrum from
a finite sequence consisting of evenly sampled data. The amplitude
and phase estimation (APES) algorithm is a good example of a high-
quality algorithm that can be applied to such data [2]. In many appli-
cations, however, it is often not possible to sample the data evenly,
leading to data sets which may be viewed as an evenly sampled data
sequence in which samples are missing. The problem of estimat-
ing spectra when data is missing has been considered, e.g., in the
astronomical literature, and several parametric and non-parametric
methods have been proposed [3, 4]. Commonly, most methods first
interpolate the missing data to yield a full data sequence without
missing samples, on which ordinary spectral estimation algorithms
may then be applied. In performing the interpolation, one is required
to make assumptions on the missing data, which can be viewed as
adding in extra information; therefore, such assumptions are of crit-
ical importance. The approach taken in [3] is particularly appealing,
since the only assumption made is that the spectral content of the
missing data is similar to that of the available data. Studies of this
method, termed gapped-data APES (GAPES), illustrate the benefits
of this approach [3, 4]. The problem of estimating the spectral pa-
rameters of damped sinusoidal data has recently attracted attention,
since such signals arise naturally in several areas of spectroscopy,
e.g., in nuclear magnetic resonance (NMR) and nuclear quadrupolar
resonance (NQR). For instance, in [5], the damped APES (dAPES)
algorithm was proposed to estimate spectra from the resulting data
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sets. Specifically, it is the free induction decay (FID) signal, mea-
sured using these spectroscopic methods, that may be well mod-
eled as a sum of exponentially damped sinusoids. Obtaining purer
FID signals is of significant interest in these applications and there-
fore new methods for acquiring FIDs are continuously investigated.
One such method is stochastic excitation, which has found applica-
tion in NMR [6, 7], electron paramagnetic resonance (EPR) [8] and
NQR [9–11]. In many cases, the noise-free signal resulting from a
stochastic excitation experiment can be well modeled as a gapped
damped sinusoidal signal. In this paper, we focus on estimating the
spectral representation of such data sets. Specifically, we combine
the GAPES and dAPES algorithms to produce the damped GAPES
(dGAPES) algorithm.

In the following, (·)T and (·)∗ denote the transpose and the con-
jugate transpose, respectively.

2. PRELIMINARIES

For completeness, we initially review the dAPES method for esti-
mating the parameters of damped sinusoids [5]. Using this frame-
work, we then extend the approach to also allow for the case of
gapped data sequences.

When the entire data set is available, we can form the complete
data vector, y, as

y =
[

y(0) · · · y(N − 1)
]T

(1)

�
[

yT
1 yT

2 · · · yT
P

]T
, (2)

where y1, . . . , yP are (non-overlapping) subvectors of y, with len-

gths N1, . . . , NP , respectively, such that
∑P

p=1 Np = N . The
dAPES spectral estimate can be interpreted as the output of an M -tap
data dependent finite impulse response (FIR) filter with taps [1, 5]

hα,ω =
[

h0(α, ω) h1(α, ω) · · · hM−1(α, ω)
]T

, (3)

designed such that

1. the damped sinusoid {e(−α+iω)t} passes undistorted through
the filter;

2. the filter output is as close as possible in the least-squares
(LS) sense to a damped sinusoid.

Thus, the output of the filter hα,ω , for generic values of the damping,
α, and the frequency, ω, can be written as

h∗
α,ωȳ = ρα,ωe−αl+iωl + w(t), (4)

where ρ is the complex amplitude, and, for l = 0, . . . , L − 1,

ȳl =
[

y(l) y(l + 1) · · · y(l + M − 1)
]T

, (5)
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are the overlapping (forward) data snapshot vectors of dimension
(M × 1), with L = N −M + 1, and w(t) denotes the residual term
containing the signal resulting from all frequencies and dampings
different from α and ω. In order to minimize the residual term, the
filter is designed as [5]

min
ρ(α,ω),hα,ω

L−1∑
l=0

∣∣∣h∗
α,ωȳl − ρα,ωe−αl+iωl

∣∣∣
2

s.t. h∗
α,ωsα,ω = 1, (6)

where

sα,ω =
[

1 e−α+iω · · · e(−α+iω)(M−1)
]T

. (7)

Let

R̂α =
1

G(α)

L−1∑
l=0

ȳlȳ
∗
l (8)

ḡα,ω =
1

G(α)

L−1∑
l=0

[
ȳle

−αl
]
e−iωl, (9)

where

Gα =

L−1∑
l=0

e−2αl = e−2α e−2αL − 1

e−2α − 1
. (10)

Then, the design objective (6), can be reformulated as [5]

min
ρα,ω ,hα,ω

Gα

[∣∣ρα,ω − h∗
α,ωḡα,ω

∣∣2 + h∗
α,ωQ̂α,ωhα,ω

]

s.t. h∗
α,ωsα,ω = 1, (11)

where

Q̂α,ω � R̂α − ḡα,ωḡ∗
α,ω. (12)

Minimizing (11) with respect to ρα,ω , yields

ρ̂α,ω = h∗
α,ωḡα,ω, (13)

which, when inserted in (11), yields

min
hα,ω

h∗
α,ωQ̂α,ωhα,ω s.t. h∗

α,ωsα,ω = 1. (14)

The solution to (14) is given by (see, e.g., [1])

ĥα,ω =
Q̂

−1

α,ωsα,ω

s∗
α,ωQ̂

−1

α,ωsα,ω

, (15)

implying

ρ̂α,ω = ĥ
∗
α,ωḡα,ω =

s∗
α,ωQ̂

−1

α,ωḡα,ω

s∗
α,ωQ̂

−1

α,ωsα,ω

, (16)

which allows for a two-dimensional spectral representation over both
frequency and damping. As observed in [5], this representation has
the significant benefit of allowing for separation of spectral peaks
closely spaced in frequency but having different dampings, or vice
versa, being of great interest in applications such as, e.g., NMR. We
remark that direct evaluation of (15) is computationally intensive, as
a matrix inverse is required for every considered α and ω. However,
by exploiting the inherent structure of the filter, one may evaluate
(15) in a computationally efficient manner [12].

3. NON-PARAMETRIC SPECTRAL ESTIMATION OF
GAPPED DATA

We now proceed to allow for the case when some segments of the
data are unavailable. These missing samples form the vector of un-
available data,

μ �
[

yT
2 yT

4 · · · yT
P−1

] ∈ C
(N−g)×1. (17)

Similarly, we form the vector of available data,

γ �
[

yT
1 yT

3 · · · yT
P

] ∈ C
g×1, (18)

where g = N1 + N3 + . . . + NP is the total number of samples
available. We note that some of these sets may be empty, e.g., N3 =
N7 = 0. Here, without loss of generality, P is assumed to be an odd
number. Reminiscent of the GAPES method [3, 4], we proceed to
formulate the proposed dGAPES estimator by:

1. Estimating the adaptive filter, hα,ω , and the corresponding
spectrum, ρα,ω via dAPES, and,

2. reconstructing the missing samples via an LS fit.

We now proceed to examine these two steps in further detail. First,
we need to form initial dAPES estimates of hα,ω and ρα,ω from the
available data. The filter length M0 is chosen so that an initial full-

rank matrix R̂α can be built using only the available data segments.
Then, ∑

p∈{1,3,...,P}
max(0, Lp) > M0 (19)

with Lp = Np −M0 + 1. Let J denote the subset of {1, 3, . . . , P}
for which Lp > 0. Letting ψp = N1 + N2 + . . . + Np−1 denote
the number of samples in the p− 1 first blocks, we redefine Rα and
ḡα,ω as

R̂α =
1

Gα

∑
p∈J

ψp+Lp−1∑
l=ψp

ȳlȳ
∗
l (20)

and

ḡα,ω =
1

Gα

∑
p∈J

ψp+Lp−1∑
l=ψp

[ȳle
−αl]e−iωl

(21)

so that the initial estimate of the dAPES filterbank in (15) uses only
the available samples. Then, we use (16) to form an initial estimate
of the amplitudes, where (9) is replaced by (21). Note that the data
snapshots used in (20) and (21) are of dimensions (M0 × 1) with
elements only from the available data vector, γ , defined in (18). We
next turn to estimating the missing data, μ, defined in (17), based on

the initial spectral estimates of ρ̂α,ω and ĥα,ω . We base our estimate
on the assumption that the missing samples have the same spectral
content as the available data. Thus, we estimate the missing data by
fitting it as close as possible in the LS-sense to ρ̂α,ωe(−α+iω)l. By
evaluating the estimates over K frequency points and D damping
points, we can obtain μ as the solution to the LS-problem

min
μ

D−1∑
d=0

K−1∑
k=0

L−1∑
l=0

∣∣∣ĥ∗
αd,ωk

ȳl − ρ̂αd,ωke(−αd+iωk)l
∣∣∣
2

. (22)

Define
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Fig. 1. The dCapon spectrum of original data.

Hd,k �

⎡
⎢⎢⎢⎢⎣

ĥ
∗
αd,ωk

ĥ
∗
αd,ωk

. . .

ĥ
∗
αd,ωk

⎤
⎥⎥⎥⎥⎦
∈ C

L×N
(23)

and

ηd,k � ρ̂αd,ωk

⎡
⎢⎢⎢⎣

1
e−αd+iωk

...

e(−αd+iωk)(L−1)

⎤
⎥⎥⎥⎦ . (24)

Using (23)-(24), one can rewrite (22) as

D−1∑
d=0

K−1∑
k=0

∥∥Hd,ky − ηd,k

∥∥2
. (25)

Introducing the matrices Ad,k ∈ C
L×g and U d,k ∈ C

L×(N−g),
defined by

Hd,ky = Ad,kγ + U d,kμ, (26)

allows (25) to be rewritten as

D−1∑
d=0

K−1∑
k=0

∥∥U d,kμ − (ηd,k − Ad,kγ)
∥∥2

. (27)

An estimate of the missing data is thus the minimizer of (27) w.r.t.
μ, i.e.,

μ̂ = Υ−1
0

D−1∑
d=0

K−1∑
k=0

U ∗
d,k

(
ηd,k − Ad,kγ

)
, (28)

where

Υ0 �
D−1∑
d=0

K−1∑
k=0

U ∗
d,kU d,k. (29)

Summarizing the algorithm, we note that once we have an estimate
of the missing sample vector, μ̂, we can use it, together with the
available samples, to reestimate {ραd,ωk , hαd,ωk}K−1,D−1

k=0,d=0 from
the available samples and the estimate of the missing samples. The
problem of estimating the spectrum of gapped-data with damped

Fig. 2. The dCapon spectrum of data reconstructed using the
dGAPES method.

sinusoids can hence be turned into a cyclic minimization problem
of the form

min
μ,{ραd,ωk

,hαd,ωk
}

D−1∑
d=0

K−1∑
k=0

L−1∑
l=0

∣∣∣h∗
αd,ωk

ȳl−

ραd,ωke(−αd+jωk)l
∣∣∣
2

. (30)

In summary, the dGAPES algorithm consists of the following steps:

Step 0. Obtain an initial estimate of {ραd,ωk , hαd,ωk} from (15)
and (16) using the available data.

Step 1. Use the most recent estimate of {ραd,ωk , hαd,ωk} to esti-
mate μ, given by (28).

Step 2. Use the most recent estimate of μ to fill in the missing data
samples and estimate {ραd,ωk , hαd,ωk} by minimizing (30).

Step 3. Repeat steps 1-2 until practical convergence, e.g., until the
relative change between the current and previous iteration of
the cost function (30) is smaller than a fixed threshold ε.

We note that for increased resolution, it is possible to evaluate the
spectral estimate on a finer damping and frequency grid when gener-
ating the amplitude estimates in the final iteration. We also note that
the dGAPES method will generate a reconstructed set of data that
can be used by other estimators, such as damped Capon (dCapon),
damped CAPES (dCAPES) [5], or HTLS [13].

4. NUMERICAL EXAMPLES

To illustrate the benefits of the proposed algorithm, we examine
stochastically excited NQR (sNQR) data mimicking the response
from the explosive TNT. This data can be well modeled as a sum
of five damped sinusoids [10, 11]. See Table 1 for parameters de-
tailing the simulated sinusoids (see also [10, 11] for a more detailed
model of the NQR response). Here, we generate an FID of length
N = 96 samples, where we assume samples 33-64 were missing.
This gives two blocks of available data, each of length 32. The data
were corrupted by zero-mean circularly symmetric complex white
Gaussian noise with power σ2

w. We used a signal-to-noise ratio
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Table 1. Estimates of the sNQR parameters for monoclinic TNT (k
denotes the peak number)

k 1 2 3 4 5

ωk (rad/s) 1.93 0.62 0.11 -0.089 -0.78
αk (1e-2) 4.01 1.28 1.22 1.92 2.07

|ρk| 5.64 2.98 6.83 12.16 9.73
∠ρk (rad) -0.17 2.52 -2.71 -2.29 -0.70

Table 2. MSE of S-HTLS, using the available-only data, and of
HTLS, using the reconstructed data

Method MSE
Amplitude Frequency Damping

S-HTLS 3.8433 3.675e-6 1.506e-4
HTLS 0.9599 1.667e-6 0.573e-4

(SNR) of 20 dB, where SNR is defined as SNR = σ−2
w σ2

s , with σ2
s

denoting the power of the noise-free signal. For the initialization
phase, we used a filter of length M0 = 12, and in the other steps
M = 38. For the computation, we used a frequency grid with
K = 512 points, a damping grid with 101 equally spaced points
in the interval [0, 0.05], and an iteration threshold ε = 0.03. Fig.
1 illustrates the dCapon spectral estimate of the available-only data
set. We used the same damping grid as in the interpolation phase but
with a finer frequency grid, i.e., K = 2048. As a comparison, Fig. 2
shows the dCapon spectral estimate of the reconstructed data set, us-
ing the same damping and frequency grid. The figures clearly illus-
trate the benefits of following the dGAPES approach which allows
for a significantly higher resolution (in both frequency and damp-
ing) as compared to current state-of-the art techniques. We proceed
to examine the gain in performance using the proposed dGAPES al-
gorithm as compared to estimating the unknown parameters on the
available data set. Table 2 shows the mean squared error (MSE)
of the amplitudes, frequencies, and dampings, computed via the S-
HTLS method [14], that uses only the available data, and the MSE
computed via HTLS [13], using the reconstructed data. Here, the
data was evaluated empirically using 1000 Monte-Carlo simulations.
From the table, it is clear that using the reconstructed data allows for
a substantial improvement of the parameter estimates.

5. CONCLUSIONS

In this paper, we have derived a method for estimation of the spec-
tral representation of gapped damped sinusoidal data. Using only
the natural assumption that the spectral content of the missing data is
similar to that of the available data, we can interpolate to reconstruct
the missing samples. From the reconstructed data we can then effi-
ciently estimate the spectral content of the data, using any method,
e.g., dCapon, dCAPES, HTLS, etc.
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