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ABSTRACT
The advance of cognitive radio (CR) technology put in evi-
dence the need of new spectral estimation methods for proper
labeling of licensed and un-licensed users. We present a new
spectral estimation procedure for monitoring the radio spec-
trum. The estimate is derived from a different view point of
traditional filter bank approach. The resulting method is able
to detect a predetermined spectral shape forming part or con-
tributing to a given data record, providing at the same time
an estimate of its power level and its frequency location. We
prove that traditional filter-bank spectral estimation reduces to
a particular case of our procedure. The specific spectral shape
to detect is named hereafter as the candidate spectrum. The
major motivation for this procedure was the proper spectrum
labeling of licensed users in cognitive radio scenarios. The
performance of the spectral monitoring procedure is demon-
strated in the detection of a BPSK primary user in a wireless
scenario containing DVB-T emissions.

Index Terms— Spectral Estimation, Cognitive Radio, Fil-
ter Bank, Spectrum Labeling, Candidate Spectrum

1. INTRODUCTION

The advance of cognitive radio technology put in evidence
that some of the radio spectrum regulation rules did not evolve
at the same velocity that radio technology. In fact, it is well
recognized that the radio spectrum is over-licensed but not
over-used. This means that currently the radio spectrum is
under utilized, mainly taking into account the available tech-
nology. There are many field tests and measurements that
show low usage of radio spectrum of certain frequency bands
and geographical regions. In 2002 studies of Federal Com-
munications Commission (FCC) reported that the variation in
the utilization of licensed spectrum ranges from 15% to 85%
[1]. In consequence, the radio spectrum is under utilized by
primary users, as an example this is the case for the TV broad-
cast band [2]. The concept of open spectrum (not free spec-
trum) consists in opening the unused spectrum to secondary
users. A potential market model would be the deployment
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by existing or new operators of spectral monitoring equip-
ment which broadcast to potential secondary users the spec-
tral vacancies in terms of time available and frequency ranges.
When a secondary user agrees to use the available spectrum
with the operator, it starts transmission with some economic
compensation for the operator for opening its spectrum to sec-
ondary users. Regardless this model is accepted or not, there
is no way to avoid the proper spectrum monitoring and la-
belling of primary users in any vision of a CR scenario[3].
Furthermore, we believe that, together with cross-layer tech-
nologies to match the frequency vacancies to the CR applica-
tions, spectral estimation tools have to be revisited to detect
spectral signatures rather than mere spectral occupancy.

Convinced that spectral signature estimation is one of the
major problems to be faced in a CR deployment, we report a
new spectral estimation, named as candidate spectrum, which
is able to detect and label specific spectral signatures [4]. The
procedure is based on the filter bank approach for spectral es-
timation , proving that traditional spectral estimation can be
encompassed as candidate spectral estimation when the can-
didate, i.e. the signature we are interested in, consists in an
un-modulated carrier. The resulting procedure is able to de-
tect and label power and central frequency location of any
spectral signature (candidate) in presence of wireless noise,
and co-channel interference with different modulation format
or signature.

This paper is organized as follows. In section 2, it is re-
visited the filter bank method for spectral estimation and ex-
plores the possibility of changing the traditional single fre-
quency scanning by a spectral shape. Derivation of the new
spectral estimation method is described in section 3. Section
4 describes different spectrum sensing techniques to detected
spectrum environment. Section 5 describes briefly the appli-
cation of cognitive radio to detect a primary user using BPSK
modulation in presence of DVB-T users using OFDM/QAM
modulation. Additionally, section 5 presents some simulation
results to evaluate the reported spectral estimation method.
Finally, in section 6, we present our conclusions.
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2. REVISITING FILTER-BANK SPECTRAL
ESTIMATION

In order to find the fundamental basis for the new spectral
estimation is necessary to revisit the filter-bank approach for
spectral estimation [5]. Basically, the mentioned approach is
based on a dedicated filter design, which steered to a given
frequency, aims to minimize spectral leakage from the rest of
frequencies. The estimate is given by the measured output
power of the filter (power level), divided by the bandwidth
of the analysis filter (power density). The minimum leakage
objective together with the steering constrain is usually for-
mulated as (1).

AH .R.A
∣∣∣
min

, subject to AHS = 1 (1)

Where S =
[

1 e (jw) ... e (j (Q − 1)) w
]H is the

steering frequency vector with w equal to (2πf), A contains
the FIRQ filter coefficients and R is the correlation matrix of
the input signal.
As concerns with the constraint, it is clear that the re-

sponse of cero dB at the steering frequency refers to the mag-
nitude only and not necessarily over the filter phase, that does
not impact in the resulting power level estimate. When setting
the magnitude constrain only, (1) is reformulated as (2).

AH .R.A
∣∣∣
min

, subject to AH
[
S.SH

]
A = 1 (2)

The solution of (2) is given by the solution of (3), where
λ is the Lagrange multiplier.

(
R − λS.SH

)
A = 0 (3)

Clearly λ represents how much power we can remove from
data at the steering frequency, such that the remaining ma-
trix preserves its positive definite character. This value, for
a rank-one subtraction can be derived directly and reduces to
be λmin of the generalized eigenvalue problem. The unitary
null eigenvector is also easy to derive. Both, eigenvector and
λmin are:

A =
R−1S(

SHR−2S
)0.5 λ =

1
SHR−1S

(4)

Note that the power level estimate coincides with the one
derived from the use of the magnitude and phase constrain.
And that when adjusting the unitary eigenvector to the con-
strain the filter also reduces to the same that in the traditional
method. In summary nothing has changed, just it is a dif-
ferent view but much richer than the traditional one as we
will see. In fact, (3) suggest a re-formulation of the non-
parametric spectral estimation problem. The problem can be
viewed as follows: First, the power level estimate is just how
much power we can remove of a single line contribution to the
data autocorrelation matrix, yet preserving its positive definite

character. Second, the analysis bandwidth can be defined as
the bandwidth of the filter producing the same power either
introducing the single line or the data autocorrelation matrix.
This is the eigenvector of (5).

R.A = λS.SHA (5)

The noise bandwidth of the eigenvector will be:

BN =
AH .A

AH
(
S.SH

)
.A

=
1

AH
(
S.SH

)
.A

(6)

Finally, the spectral density will be estimated by the power
level λ divided by BN .

ŝ(w) = [A.
(
S.SH

)
.A]λ (7)

In summary, this complicated manner of looking to a well
known and solved, problem resumes as: Compute λmin in
(3) for power level estimate and the corresponding eigenvec-
tor; then use (7) for spectral density. The motivation for this
complex view of filter-bank spectral estimation is appreciated
in the next section.

3. CANDIDATE SPECTRAL ESTIMATION

Formula (3), as mentioned before, reveals that looking for
a single carrier contribution in data autocorrelation matrix is
just a problem of spectral subtraction. Furthermore, the con-
cept of a basic candidate that its modulated from cero fre-
quency to any other frequency can be formulated as, the basic
zero frequency line with candidate correlation equal to 1.1H ,
where 1 denotes the vector of ones on every entry, which is
modulated to the scanned frequency as (8), where� indicates
element wise product.

R
SC

=
(
S.SH

) � (
1.1H

)
=

(
S.SH

) � R
C

(8)

In summary, the candidate we are looking for is the square
matrix of ones, aiming to determine in which frequency it is
located and what is its power level. At this moment we are
ready to solve the CR problem. Let us assume that the li-
censed user is, for example, a BPSK modulation signal with
four samples per symbol and rectangular pulse shape. The
candidate correlation will be a Toeplitz matrix containing [1
0.75 0.5 0.25 0 0] as its first row. Then the power level esti-
mate of this signature at a given frequency will be the mini-
mum eigenvalue of (9).(

R − λ.
(
S.SH

) � R
C

)
A = 0 (9)

Next, using the corresponding eigenvector, the density of the
candidate will be (10).

ŝC(w) =
[
AH

((
S.SH

) � R
C

)
A

]
λ (10)
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Note that for the same symbol rate, any M-QAM signal, with
rectangular pulse signaling, will be detected as candidate.
When the symbol’s rate (bauds) is not equal, the number of
samples per symbol will change and, in consequence, it will
not be recognized as the candidate which is at a rate, relative
to our sampling rate, of four samples per symbol.

4. SPECTRUM SENSING ALTERNATIVES

The fundamental of CR technology is spectrum sensing
method, whose function is to detect the current spectrum en-
vironment and to find the empty spectrum [6, 7]. Spectrum
sensing is the process of periodically and dynamically detect
primary users. Methods for spectrum sensing use to be based
on energy detection and they are implemented by averaging
frequency bins of an FFT, being blind to the modulation for-
mat that causes the measured energy [8]. At the same time,
they show the low resolution associated with Fourier based
methods. Other tool proposed for spectral monitoring is fea-
ture detection. These procedures exploit the periodicity in-
herent to most of the modulated signals. More specifically
the ciclo-stationarity is the most used feature for spectrum la-
belling. These techniques are, let us say, less blind than the
energy detection to the modulation format, but they suffer of
low resolution. In addition, from preliminary simulations they
seem to show lower robustness, in terms of detection versus
false alarm, to SNR of the candidate, to short data records
and to order selection. A similar alternative is to use high
order moments for modulation detection but, again based in
our limited experience, they seem to be blind to differentiate
CR from primary users since they have low frequency resolu-
tion. At the same time, both cyclo-stationary as well as high
order methods require long data lengths (long decision delay)
for proper performance as modulation detectors. In summary,
from out knowledge, none of the reported schemes for CR
spectrum labelling have the ability of candidate spectrum to
label power level and frequency location for an specific mod-
ulation format, in strong interferences and with low decisions
delays.

5. A COGNITIVE RADIO APPLICATION

The application to be described, in order to show the poten-
tial of candidate spectrum labelling, is to detect unused TV
channels. The wireless scenario contains one BPSK primary
user and two DBV-T users having a power of 28 dB and a car-
rier frequency at 90 Mhz and 610 Mhz , using OFDM/QAM
modulation see in Fig 1. The DVB-T users transmit the sig-
nal organized in frames. Each frame has a duration of Ts and
consist of 68 OFDM symbols. Each symbol is constituted by
a set of 1705 carriers in the 2K mode [9]. The transmitted
signal is described by the following equation:

s(t) = Re

{
ej2πfct

∞∑
m=0

67∑
l=0

Kmax∑
k=Kmin

cm,l,k × ψm,l,k (t)

}

(11)
where

ψm,l,k (t) = ej2π(t−Δ) (12)

The primary user, we aim to detect, is transmitting a BPSK
modulated signal with four samples per symbol at 350 Mhz
with 26 dB of power and rectangular pulse shape. The chan-
nel is assumed non frequency selective, i.e. flat fading, other-
wise the procedure have to be refined to cope with the chan-
nel effects on the candidate at the spectral monitoring station.
The sample autocorrelation R̂

xx
is computed using the for-

ward and backward method formulated as (13)

R̂
xx

=
1

2 (N − Q)

N∑
n=Q+1

{x(n)xH(n) + Jx∗(n)xT (n)J}

(13)
Where Q is the filter order (Q = 8), N is the number of
samples (N = 1705), J is the exchange matrix whose cross
diagonal elements are ones and all the others are zeros. Next
diagram summarizes the candidate spectrum method.

Algorithm 1 New Spectral Estimation Method
Define Candidate Autocorrelation Matrix:
SetRc at unit power level and baseband frequency
Find minimum eigenvalue and eigenvector associated of:
Re = λ

�
SSH � Rc

�
e

Compute power level:
γ̂ = λ

Compute Density Estimate:
ŝc = λ

�
e
�
SSH � Rc

�
e
�

The estimates provided by the candidate spectrum tech-
nique are compared with the periodogram method, the tradi-
tional power level and the power density method
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Fig. 1. Wireless scenario 90 Mhz and 610 Mhz DVB-T users
and a 350 Mhz BPSK primary user (candidate)
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Fig. 2. Scenario of DVB-T users and BPSK candidate sensed
with periodogram, Capon Method, Capon Method’s spectral
density and Candidate Spectral Estimation
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Fig. 3. Same scenario as figure 2 when BPSK candidate user
vacate the radio spectrum

Figure 2 shows spectral estimates for the mentioned sce-
nario using the followings methods: Periodogram, Capon ,
Candidate Spectral Estimation and power density. Observe
that the proposed method only labels the BPSK primary user,
i.e. the candidate, providing its power level with good accu-
racy (26 dB).
Figure 3 illustrates the case when the BPKS candidate

user does not use the radio spectrum, since it is not active. The
candidate estimate stays around the white noise level since
no contribution of candidate is present at the receiver. Tradi-
tional procedures continue detecting energy regardless it does
not correspond to the primary user. These preliminary results
show that the candidate method is able to detect and label
specific spectral shape

6. CONCLUSIONS

The candidate spectrum, has been introduced from revisiting
the filter bank framework. Traditional estimates can be en-
compassed as the case where the candidate reduces to an un-
modulated carrier. The performance of the candidate spec-
trum depends on the agreement between the candidate au-
tocorrelation matrix and the actual one. This represents a
problem for wireless scenarios experiencing selective fading.
Further work, in addition to a solution to the selective fading
problem, includes refinements to increase dynamic range on
power level, estimation impact, further refinements in order
to improve the detection versus false alarm performance, and
wideband signal conditioning for the received signal.
As an example, we have shown that candidate spectral es-

timation can be used to detect the presence of BPSK primary
user (candidate), regardless of the other two DVB-T transmis-
sion signals. In addition, the method provides the power level
and frequency location of the BPSK transmission signal.
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