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ABSTRACT
Recently the concept of ideal binary time-frequency masks
has received attention and their optimality in terms of signal-
to-noise ratio has been presumed. However the optimality
is not rigorously analyzed. In this paper we treat this issue
formally and clarify the conditions for ideal binary masks to
be optimal. We also experimentally compare the performance
of ideal binary masks in terms of signal-to-noise ratio to that
of ideal ratio masks on a speech mixture database and a music
database. The results show that ideal binary masks are close
in performance to ideal ratio masks which are closely related
to the Wiener filter, the theoretically optimal linear filter.

Index Terms— Ideal binary mask, ideal ratio mask, opti-
mality, sound separation, Wiener filter

1. INTRODUCTION

The human auditory system has the ability to segregate an
acoustic mixture into perceptual streams that correspond to
different sound sources. Bregman [1] proposed an influential
theory, called auditory scene analysis (ASA), to explain this
ability. Inspired by ASA, computational auditory scene anal-
ysis (CASA) attempts to build monaural and binaural systems
that possess the same functionality [2]. An important idea
in CASA systems developed is binary time-frequency (T-F)
masking that is used to extract a target sound [2]. After an
input is transformed to a T-F representation such as a spectro-
gram or a cochleagram, an element of such a representation,
called a T-F unit, is assigned 1 if its energy is considered as
from the target or 0 otherwise. Hu and Wang [3, 4] proposed a
binary mask where a T-F unit is assigned 1 if in that unit target
energy is stronger than interference energy and 0 otherwise.
They called such a mask the ideal binary mask (IBM) since it
represents the computational objective of their system and its
construction requires premixing target and interference. The
IBM dramatically improves the intelligibility of speech cor-
rupted by noise [5, 6, 7]. Several CASA algorithms that di-
rectly estimate the IBM [5, 4] have produced good results in
speech separation.

Signal-to-noise ratio (SNR) has been widely used as a per-
formance measure in sound separation. For sound separation,
it is defined as

SNR = 10 log10

∑
n x2[n]∑

n(x̂[n] − x[n])2
, (1)

where x[n] is a target signal and x̂[n] is the estimated target
signal. It has been noted that the IBM is locally optimal in
the SNR sense, i.e., flipping a T-F unit’s assignment in the
IBM always lowers the SNR in that unit. It has also been
assumed that the IBM is globally optimal, i.e., the IBM pro-
duces an output with the highest SNR gain among all binary
masks. Two arguments exist for the global optimality of the
IBM. The argument by Hu and Wang [4] is based on the lo-
cal optimality of the IBM. At each T-F unit, the IBM either
maximally retains target energy or removes interference en-
ergy. Therefore it minimizes the sum of missing target energy
that is discarded and interference energy that is retained, i.e.,
the denominator in (1). As a result, the IBM would achieve
the highest SNR. The other argument by Ellis [8] is based
on Wiener filtering. According to Wiener filtering, optimal
SNR can be achieved by the Wiener filter whose frequency
response is PT /(PT + PI), where PT and PI are the power
spectrum densities of target and interference signals, respec-
tively. Quantizing the Wiener filter at each T-F unit to the
closest binary value results in the IBM which would produce
the optimal binary mask. These two arguments are flawed be-
cause the SNR calculation is nonlinear: the local optimality
may not lead to the global optimality.

The concept of the IBM with its assumed global optimal-
ity has received attention recently. Many computational sys-
tems have used the IBM as a measure of ceiling performance
for sound separation [9, 10, 11, 12, 13]. In this paper, we
give a rigorous treatment on the optimality of the IBM. In
Section 2 we consider the optimality of the IBM at three dif-
ferent levels: the T-F unit level, the time frame level, and the
global level. We show that, at each level, the IBM can be opti-
mal under certain conditions. We also give a counterexample
showing that the IBM is not optimal when these conditions
are violated. In Section 3 we compare SNR gains of the IBM
to those of ideal ratio masks that are closely related to the
Wiener filter. Section 4 concludes the paper.

2. THE OPTIMALITY OF THE IDEAL BINARY
MASK AT DIFFERENT LEVELS

2.1. T-F Unit Level

Given a T-F decomposition, we consider Xc,m and Yc,m, the
spectral values of a target signal and an interference signal at
T-F unit ucm, respectively. c is the frequency index and m the
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frame index. At the T-F unit level, the definition of SNR in
(1) should be changed slightly when spectral values instead
of time-domain signals are used:

SNR = 10 log10

|Xc,m|2
|X̂c,m − Xc,m|2 , (2)

where X̂c,m is the estimated spectral value of the target. Ac-
cording to the definition of the IBM,

X̂c,m =

{
Xc,m + Yc,m, if |Xc,m|2 > |Yc,m|2,
0, otherwise.

(3)

Consider the case where |Xc,m|2 > |Yc,m|2, i.e., the tar-
get is stronger in energy than the interference at ucm. If ucm

is assigned 1 as in the IBM, then the denominator in (2) is

|X̂c,m−Xc,m|2 = |Xc,m +Yc,m−Xc,m|2 = |Yc,m|2. (4)

On the other hand, if ucm is assigned 0, the denominator is

|X̂c,m − Xc,m|2 = |0 − Xc,m|2 = |Xc,m|2. (5)

Since |Yc,m|2 < |Xc,m|2, the denominator is smaller when
ucm is assigned according to the IBM.

Similarly, if |Xc,m|2 � |Yc,m|2, i.e., the target is not
stronger in energy than the interference, according to the IBM,
ucm is assigned 0 and the denominator becomes

|X̂c,m − Xc,m|2 = |0 − Xc,m|2 = |Xc,m|2. (6)

If ucm is assigned 1, then

|X̂c,m−Xc,m|2 = |Xc,m +Yc,m−Xc,m|2 = |Yc,m|2. (7)

Since |Xc,m|2 � |Yc,m|2, the IBM yields a denominator no
greater than its alternative. Based on the above discussion, the
IBM always minimizes the denominator among binary masks
and consequently maximizes the SNR. Therefore we can con-
clude that the IBM is optimal at the T-F unit level.

2.2. Time Frame Level

Now consider xm[n], the one-frame time-domain target sig-
nal. Without loss of generality, we assume that the index of
n is from 0 to N − 1. Denote the time-domain estimate of
xm[n] as x̂m[n]. The SNR of x̂m[n] with respect to xm[n]
can be calculated using (1) with summation of n from 0 to
N − 1. It is clear from (1) that maximizing the SNR is the
same as minimizing the denominator, the energy of the error
signal x̂m[n] − xm[n]. According to the Parseval’s theorem
[14], we have

N−1∑
n=0

(x̂m[n] − xm[n])2 =
1
N

N−1∑
c=0

|X̂c,m − Xc,m|2, (8)

where Xc,m is the spectral value of the target at frequency c

and X̂c,m is the estimate of Xc,m.

In Section 2.1, we have shown that the IBM minimizes
|X̂c,m − Xc,m|2 for each c. Therefore the IBM also mini-

mizes the summation
∑N−1

c=0 |X̂c,m−Xc,m|2. As a result, the
IBM yields the highest SNR among all binary masks. Since
the Parseval’s theorem holds for any orthogonal decomposi-
tion, we can conclude that a sufficient condition for the IBM
to be optimal at the time frame level is that frequency decom-
position is orthogonal.

2.3. Global Level

Now consider the entire target signal x[n], which is processed
frame by frame. We can write x[n] as

x[n] =
1

A[n]

M−1∑
m=0

xm[n], (9)

where M is the number of frames. A[n] is a normalization

factor given by A[n] =
∑M−1

m=0 w[n − mτ ], where w is a
window function with length N and τ is the frame shift. Note
now xm[n] = 0 for n < mτ and n � mτ + N . Similarly we
can write the entire estimated target signal as

x̂[n] =
1

A[n]

M−1∑
m=0

x̂m[n]. (10)

Again x̂m[n] = 0 for n < mτ and n � mτ + N .
After straightforward derivation, the energy of the entire

error signal is∑
n

(x̂[n] − x[n])2

=
∑

n

1
A2[n]

(
∑
m

(x̂m[n] − xm[n])2+

2
∑
m1

∑
m2>m1

(x̂m1 [n] − xm1 [n])(x̂m2 [n] − xm2 [n])).

(11)

If consecutive frames do not overlap, for a particular n, either
x̂m1 [n]−xm1 [n] or x̂m2 [n]−xm2 [n] is zero. This is because a
frame is zero outside of its corresponding window and m1 �=
m2. In this case, the cross terms in (11) do not contribute to
the overall error energy and (11) becomes

∑
n

(x̂[n]−x[n])2 =
∑

n

1
A2[n]

∑
m

(x̂m[n]−xm[n])2. (12)

Assume A[n] is constant for all n, we have

∑
n

(x̂[n] − x[n])2 =
1

A2

∑
m

∑
n

(x̂m[n] − xm[n])2. (13)

Note that the order of summation is also switched in (13).
Since the IBM minimizes

∑
n(x̂m[n]−xm[n])2 for each frame

m as discussed in Section 2.2, it also minimizes the energy
of the entire error signal. Consequently, the IBM is optimal
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Fig. 1. An example showing that the IBM is not optimal when
frames overlap even with a rectangular window. (a). The
waveform of a target music signal. (b). The waveform of
an interference music signal. (c). The IBM. (d). A mask
generated with a local SNR threshold of 0.4 dB. In the masks
white indicates 1 while black 0.

among binary masks. For A[n] to be constant the window
function w must be rectangular. Non-overlapping windowing
can be considered as an orthogonal decomposition of a signal
in the time domain. Therefore we conclude that a sufficient
condition for the IBM to be optimal at the global level is or-
thogonal T-F decomposition with a rectangular window.

If consecutive frames overlap, the cross terms also con-
tribute to the overall energy of the error signal. In this case,
a T-F unit couples with T-F units in the overlapping frames.
For example, if the overlap is 50%, it can be shown that a T-F
unit will couple with every other T-F unit in the successive
frame. It is in general difficult to quantify the contribution of
the cross terms and compare it with the square terms. How-
ever, because of the nonlinearity in the SNR calculation, we
suspect that IBM may not be optimal in the overlapping case.
In the next subsection we will show that other binary masks
can indeed give higher SNR in this case.

2.4. A Counterexample

We use an example to illustrate that the IBM is not optimal
when frames overlap. The top two panels in Fig. 1 plot the
waveforms of two musical signals sampled at 20 kHz. The
two signals are mixed to 0 dB and the first one is chosen as the
target. In T-F decomposition, we use a frame length of 512
samples with 50% overlapping and at each frame we apply
DFT. The windowing function is rectangular. The lower left
plot in Fig. 1 is the IBM while the lower right is a mask
generated with a local SNR threshold of 0.4 dB, i.e., ucm is

labeled 1 if and only if 10 log10
|Xc,m|2
|Yc,m|2 > 0.4. The circle

marks one noticeable difference between the two masks. The
SNR gain of the IBM is 16.7 dB while the SNR gain for the
other mask is 16.9 dB. Therefore the IBM is not optimal.

3. THE IDEAL BINARY MASK AND THE IDEAL
RATIO MASK

Since most sound separation systems decompose a signal into
overlapping frames to reduce boundary effects caused by win-
dowing, the IBM may not be optimal. But we find that its
SNR gains are actually close to those of ideal ratio masks
(IRM). The IRM is defined as [15]

Rc,m =
|Xc,m|2

|Xc,m|2 + |Yc,m|2 (14)

for each c and m. The IRM is closely related to the Wiener
filter, the optimal linear filter in the minimum mean-square
error sense [16]. If non-causality is allowed and a target sig-
nal is uncorrelated with an interference signal, the Wiener
filter amounts to the same ratio as (14) with spectral values
replaced by power spectral densities [17]. The conditions
for the Wiener filter to be a ratio mask are satisfied in most
cases since most sound separation systems operate offline and
sound sources are generally independent.

Although one can show that the IRM always achieves a
local SNR gain no smaller than the IBM, it is difficult to the-
oretically quantify the global difference between the two. We
investigate this issue experimentally using a speech mixture
database and a music database. The speech mixture database
is collected by Cooke [18], which includes different types of
interference that are commonly encountered in real environ-
ment. The music database is constructed from Bach’s works,
each of which has two lines and each line of music is synthe-
sized using instrument samples from the RWC database [19].
Targets and interference are mixed to 0 dB.

Table 1 shows the SNR gain for two databases and two
frequency decomposition methods. GF represents the gam-
matone filterbank which has been widely used in CASA [2].
The parameters used for DFT are mentioned in Section 2.4
while the parameters used for GF can be found in [4] except
that the frame length is 512 samples and the frequency range
is set to 50 to 8000 Hz. We can see from the table that in all
cases the SNR gain of the IRM is higher. On the other hand,
the SNR gain of the IBM is close to that of the IRM, par-
ticularly for gammatone decomposition. This indicates that,
although the IBM is not optimal, it still gives a very reason-
able performance metric for sound separation.

4. CONCLUSION

In this paper we have addressed the optimality of the IBM in
terms of SNR gain at three different levels and clarified the
conditions at each level for the IBM to be optimal. For the
IBM to be globally optimal, the T-F decomposition should be
orthogonal and the windowing function rectangular. Our ex-
perimental results have also shown that the performance of
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Database DFT GF
IBM IRM IBM IRM

Speech 14.5 15.2 14.4 14.8
Music 12.4 13.1 10.5 10.6

Table 1. SNR gains of IBM and IRM

the IBM is close to that of the IRM. Therefore the IBM is still
a good objective for sound separation. Note that IBM estima-
tion, unlike IRM estimation, requires only binary decisions,
which makes applicable a host of classification and clustering
methods.

In our discussion of the optimality of the IBM, we treat a
signal deterministically, i.e., we do not consider the statistical
properties of a signal such as stationarity. We believe that our
treatment is more appropriate because it makes no assumption
about signals. For example, if signals are treated statistically,
the energy of the error signal has to be replaced by the expec-
tation of the energy. In this case, we have E(

∑
n(xm[n] −

x̂m[n])2) = E(
∑

c |Xc,m − X̂c,m|2). To proceed, i.e., to
switch the expectation and summation, one has to assume that
error terms of different c are statistically independent. How-
ever such an assumption is difficult to justify.
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