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ABSTRACT

Blind source separation (BSS) and Quantum Information Process-
ing (QIP) are two recent and rapidly evolving fields. No connec-
tion has ever been made between them to our knowledge, except
in our initial paper [1]. However, future practical QIP systems will
probably involve ”observed mixtures”, in the BSS sense, of quantum
states (qubits), e.g. associated to coupled spins. We here investigate
how individual qubits may be retrieved from cylindrical-symmetry
Heisenberg-coupled versions of them, and we show the relationship
between this problem and classical BSS. We thus introduce a new
nonlinear mixture model for qubits, motivated by actual quantum
physical devices. We analyze the invertibility and ambiguities of
this model. We propose practical data processing methods for (i) es-
timating the mixing parameter with a maximum likelihood approach
and (ii) performing inversion to retrieve the sources. This yields a
major extension as compared to our previous paper [1], not only in
terms of considered spin coupling model, but also because we here
introduce a much more powerful mixture estimation procedure.

Index Terms— blind source separation, maximum likelihood
estimation, quantum information processing, qubits.

1. INTRODUCTION

Various areas in the information processing field developed very
rapidly during the last decades. This includes the generic Blind
Source Separation (BSS) problem [2], which consists in estimating a
set of unknown source signals from a set of observed (i.e. measured)
signals which are ”mixtures” of these source signals. BSS methods
thus apply to a wide range of signal denoising and component ex-
traction problems. This especially concerns communications, e.g.
when a set of radio-frequency antennas provide linear combinations,
i.e. ”mixtures”, of several emitted signals and one aims at retrieving
each emitted signal only from their available mixtures (see e.g. [3]
for an implementation of this approach).

Another growing area is Quantum Information Processing (QIP),
which is closely related to Quantum Physics (QP) [4]. QIP uses
abstract representations of systems whose behavior is requested to
obey the laws of QP. This already made it possible to develop new
and powerful information processing methods, to be contrasted with
”classical”, i.e. non-quantum, methods such as the above-mentioned
BSS approaches. Their effective implementation then requires to
develop corresponding practical quantum systems, which is only an
emerging topic today.

To our knowledge, no connection has ever been made between
the BSS and QIP/QP areas, except in our initial paper [1]. One
may expect, however, that ”coupling” between individual ”signals”
(i.e. states) will also have to be considered in the QIP/QP area.
Such couplings e.g. occur when two spins interact according to the
cylindrical-symmetry Heisenberg model. In this paper, we consider
this configuration, we investigate how each spin may be retrieved
from the coupled version of both of them, and we show the relation-
ship between this problem and classical BSS. The relevance of this
approach also stems from the fact that, to a large extent, classical
BSS belongs to the more general Statistical Signal Processing (SSP)
field. Since QIP and QP are essentially based on a probabilistic view
of physical phenomena, trying to bridge the gap between SSP/BSS
and QIP/QP is a priori a reasonable attempt.

2. DEFINITION OF A SINGLE QUBIT

The fundamental concept used in abstract QIP is the quantum bit,
or qubit [4]. A qubit has a state |ψ >, which may be expressed in
the basis defined by two vectors, that we denote |+ > and |− >
hereafter. This state thus reads

|ψ >= α|+ > +β|− > (1)

where α and β are two complex-valued coefficients, which are re-
quested to be such that the state |ψ > is normalized, i.e.

|α|2 + |β|2 = 1. (2)

From a QP point of view, this abstract mathematical model espe-
cially concerns the spin of an electron, which is a quantum (i.e.
non-classical) quantity. The component of this spin along a given
arbitrary axis Oz defines a two-dimensional linear operator sz . The
two eigenvalues of this operator are equal to+ 1

2
and − 1

2
in normal-

ized units, and the corresponding eigenvectors are therefore denoted
|+ > and |− >. The value obtained when measuring this spin com-
ponent can only be + 1

2
or − 1

2
. Moreover, assume this spin is in

the state |ψ > defined by (1) when performing such a measurement.
Then, the probability that the measured value is equal to + 1

2
(resp.

− 1
2
) is equal to |α|2 (resp. |β|2), i.e. to the squared modulus of the

coefficient in (1) of the associated eigenvector |+ > (resp. |− >).

The above discussion concerns the state of the considered spin
at a given time. In addition, this state evolves with time. The spin
is supposed to be placed in a magnetic field and thus coupled to
it. The time interval when it is considered is assumed to be short

34971-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



enough for the coupling between the spin and its environment to be
negligible. In these conditions, the spin (and then, the two coupled
spins in Section 3) has a Hamiltonian. Therefore, if the spin state
|ψ(t0) > at time t = t0 is defined by (1), it then evolves according
to Schrödinger’s equation and its value at any time t is

|ψ(t) >= αe
−iωp(t−t0)|+ > +βe−iωm(t−t0)|− > (3)

where i = (−1)
1

2 and the real (angular) frequencies ωp and ωm

depend on the considered physical setup.

3. NEW COUPLING/MIXINGMODEL FOR TWO QUBITS

3.1. Quantum point of view: spin coupling model

Future QIP systems will simultaneously handle several qubits, which
will e.g. be physically implemented as sets of spins. One may expect
that undesired coupling between these spins will appear in quantum
physical setups, as in current classical signal processing systems,
such as the one outlined in Section 1 for communication applica-
tions. In our initial paper [1], we only considered a very simple
situation, when two identifiable spins are coupled according to the
isotropic Heisenberg model. We here address a more general case,
corresponding to a version of the Heisenberg model which is not
any more isotropic but has a cylindrical-symmetry axis, denotedOz.
These spins are assumed to be placed in a magnetic field, also ori-
ented along Oz and with a magnitude B. We then assume that these
two spins, called spin 1 and spin 2 hereafter, are resp. initialized
with states

(α1|+ > +β1|− >) and (α2|+ > +β2|− >) (4)

at a given time t0 and coupled according to the above-defined model
from then on. Hereafter, we consider the state |ψ(t) > of the overall
system composed of these two identifiable spins. At time t0, this
state is equal to the tensor product of the states (4) of both spins. It
may be expressed as

|ψ(t0) >= α1α2|++ > +α1β2|+− > +β1α2|−+ > +β1β2|−− >
(5)

in the four-dimensional basis B+ = {| + + >, | + − >, | − + >
, | − − >} which corresponds to the operators s1z and s2z resp. as-
sociated to the components of the two spins along the symmetry axis
Oz. This state may also be expressed in the four-dimensional basis
composed of the eigenvectors of cylindrical-symmetry Heisenberg
Hamiltonian. We here denote this basis B1 = {|1, 1 >, |1,−1 >
, |1, 0 >, |0, 0 >}. The expression of this basis with respect to B+

for this new coupling model may be derived from QP calculations.
The details of these calculations are skipped here due to space lim-
itations. Briefly, these calculations are based on: (i) the cylindrical-
symmetry Heisenberg Hamiltonian, which reads

H = Gs1zB+Gs2zB−2Jxy(s1xs2x +s1ys2y)−2Jzs1zs2z (6)

and (ii) the QP operators s+ = sx + isy and s
− = sx − isy . Using

the resulting expression of B+ with respect to B1, (5) yields

|ψ(t0) >= α1α2|1, 1 > +β1β2|1,−1 > +
α1β2 + β1α2√

2
|1, 0 >

+
α1β2 − β1α2√

2
|0, 0 > . (7)

The temporal evolution of this state then corresponds to phase ro-
tations for each eigenvector, as in (3). The state at any time t then

reads in basis B1

|ψ(t) >= α1α2e
−iω1,1(t−t0)|1, 1 > +β1β2e

−iω1,−1(t−t0)|1,−1 >

+
α1β2 + β1α2√

2
e
−iω1,0(t−t0)|1, 0 >

+
α1β2 − β1α2√

2
e
−iω0,0(t−t0)|0, 0 > (8)

where ωi,j is the real frequency associated to the phase rotation for
each eigenvector |i, j >. Using the expression of B1 with respect
to B+ then yields the expression of the system state at any time t in
basis B+

|ψ(t) >= α1α2e
−iω1,1(t−t0)|+ + > +β1β2e

−iω1,−1(t−t0)| − − >

+
1

2

h
(α1β2 + β1α2)e

−iω1,0(t−t0)

+(α1β2 − β1α2)e
−iω0,0(t−t0)

i
|+− >

+
1

2

h
(α1β2 + β1α2)e

−iω1,0(t−t0) − (α1β2

−β1α2)e
−iω0,0(t−t0)

i
| −+ > . (9)

Note that this state |ψ(t) > is more easily expressed in basis B1 than
in B+. We have to consider the latter expression however, because
only this basis corresponds to variables which may be measured in
practice, i.e. s1z and s2z .
We here started from a concrete (i.e. physical) setup, thus con-

sidering a QP point of view. This led us to the state expression (9).
From here on, we may therefore move to an abstract QIP point of
view, only considering the couple of qubits defined by this state ex-
pression (9) and aiming at estimating each of these qubits from their
coupled version (9).

3.2. SSP point of view: BSS mixing model

The method that we propose for estimating the considered qubits is
based on an SSP approach. It first extends to two qubits the ”repeated
write/read” (RWR) procedure that we introduced for one qubit in
[1]. The resulting method consists in performing K times the same
”write/read” step. In each occurence k of this step, a user W first
writes (i.e. prepares) both qubits at time tw(k), resp. with the states
defined in (4), and a user R then reads at time tr(k) the state of the
system composed of the two coupled qubits, which is defined by (9)
except that (t− t0) is replaced by T (k) = tr(k)− tw(k). Reading
this state means that user R measures the couple of values associated
to s1z and s2z . This couple is then equal to one of the four possible
values (+ 1

2
,+ 1

2
), (− 1

2
,− 1

2
), (+ 1

2
,− 1

2
) and (− 1

2
,+ 1

2
), resp. with

probabilities p1, p2, p3 and p4 equal to the squared moduli of the
coefficients associated to the states composing B+ which appear in
the considered modified version of (9), i.e.˛̨

˛α1α2e
−iω1,1T (k)

˛̨
˛2 = p1 (10)

˛̨̨
β1β2e

−iω1,−1T (k)
˛̨̨2

= p2 (11)

1

4

˛̨
˛(α1β2 + β1α2)e

−iω1,0T (k)

+(α1β2 − β1α2)e
−iω0,0T (k)

˛̨̨2
= p3 (12)

1

4

˛̨
˛(α1β2 + β1α2)e

−iω1,0T (k)

−(α1β2 − β1α2)e
−iω0,0T (k)

˛̨
˛2 = p4. (13)
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(10)-(11) do not depend on their phase factors, i.e. they reduce to

|α1α2|2 = p1 (14)

|β1β2|2 = p2. (15)

In order to use our SSP approach, (12)-(13) should involve the same
parameter values in all occurences k of the write/read step. The
write-read time interval T (k) should therefore be the same for all
occurences. It is denoted T hereafter. Estimates of p1 to p4 may
then be straightforwardly obtained as the relative frequencies of oc-
curence of the four values (+ 1

2
,+ 1

2
) to (− 1

2
,+ 1

2
) resp. in the mea-

surements. Unfortunately, these estimated probabilities do not di-
rectly yield the parameters αi and βi that user R aims at determining,
i.e. the considered two qubits are ”mixed” in these measured data de-
fined by (12)-(15). This therefore defines a new nonlinear BSS-like
problem. This new BSS configuration involves the following three
items: at this stage, (i) the observed data consist of the measured
probabilities p1 to p4, (ii) the ”source signals” to be extracted from
them are the parameters αi and βi and (iii) the unknown coefficients
of the considered set of nonlinear mixing equations are the frequen-
cies ωi,j . These three items deserve the following comments.
Let us first note that the equations in the complete mixture model

(12)-(15) are partly redundant: we always have

p1 + p2 + p3 + p4 = 1 (16)

because the initial states (4) are normalized, so that the state |ψ(tw(k)) >
defined by (5) is normalized, and this state then evolves according to
Schrödinger’s equation, which keeps norm unchanged. We there-
fore only consider p1, p2 and p3 as the observed data hereafter, and
(12), (14), (15) as the mixing equations. Using standard BSS no-
tations, the observation vector is therefore x = [x1, x2, x3]

T with
x1 = p1, x2 = p2 and x3 = p3.
To derive the final expressions of the mixing model and sources,

we then express each complex-valued qubit parameter in polar form

α1 = r1e
iθ1 β1 = q1e

iφ1 α2 = r2e
iθ2 β2 = q2e

iφ2 .
(17)

Eq. (14)-(15) are then easily shown to be equivalent to

r
2
1r

2
2 = p1 (18)

q
2
1q

2
2 = p2. (19)

Longer calculations using phase factorizations show that (12) may
be expressed as

(r1q2 cosΔE)2 + (q1r2 sin ΔE)2

−2r1r2q1q2 cos ΔE sin ΔE sin ΔI = p3 (20)

where ΔI = (φ2 − φ1)− (θ2 − θ1) (21)

and ΔE =
(ω1,0 − ω0,0)T

2
. (22)

Moreover, each initial qubit state meets the normalization condition
(2), so that

qi =
q

1− r2i ∀i ∈ {1, 2}. (23)

Therefore, among all four modulus parameters in the right-hand ex-
pressions in (17), one may consider only the two parameters ri as
independent variables, i.e. ”sources”, while the parameters qi are
then derived from these ri by means of (23). The mixing equation
(19) may then be rewritten as

(1− r21)(1− r22) = p2. (24)

Similarly, the four phase parameters in the right-hand expressions in
(17), only yield a single ”source”, i.e. the parameter ΔI defined in
(21), since only this combination of the phase parameters is involved
in the mixing equations (18),(20),(24) and may therefore be retrieved
from the observed data. To avoid ambiguities, one may therefore fix
three of the phase parameters θ1, φ1, θ2, and φ2 (e.g. to 0) and
only use the fourth parameter to store information. Using standard
BSS notations, the source vector is therefore s = [s1, s2, s3]

T with
s1 = r1, s2 = r2 and s3 = ΔI .
The only mixing parameter in the above equations is ΔE , de-

fined in (22). The latter equation shows that, by selecting T low
enough, we can guarantee that − π

2
≤ ΔE ≤ π

2
. We then have a bi-

jective relationship betweenΔE and v = sin ΔE . We can then con-
sider the latter variable as the mixing parameter in (20) and rewrite
this equation accordingly, also taking into account that the above as-
sumptions yield cosΔE =

√
1− v2. Also using (23), Eq. (20) thus

becomes

r
2
1(1− r22)(1− v2) + (1− r21)r22v2

−2r1r2

q
1− r21

q
1− r22

p
1− v2v sin ΔI = p3. (25)

This yields the final form of our ”polar complex-valued cylindrical-
symmetry Heisenberg spin coupling model”, called ”DD4” due to
the names of the previous models that we introduced in [1]. This
model may be expressed in compact form as x = g(s), where the
nonlinear mixing function g has three components g1 to g3, i.e. xi =
gi(s), ∀i ∈ {1 . . . 3}. These gi are resp. defined by (18), (24), (25).

4. INVERTIBILITY OF BSS MIXINGMODEL

Given v and an observed vector x which meets x = g(s), we here
aim at deriving the number and expressions of source vectors swhich
are such that x = g(s). The mixing equations (18) and (24) only in-
volve the two sources s1 = r1 and s2 = r2. They may be solved by
adapting the method that we introduced in [1] for another spin cou-
pling model and for real-valued qubits. This here shows that both
sources ri are defined by

ri =

r
1

2

h
(1 + p1 − p2) + ε

p
(1 + p1 − p2)2 − 4p1

i
(26)

with ε = 1 for one of these sources and ε = −1 for the other one.
This permutation ambiguity therefore results in two solutions for the
couple (r1, r2). Hereafter, we request the qubit initialization to al-
ways be performed with r1 <

1
2
< r2, so that it is guaranteed that

only one of the above two solutions for (r1, r2) is relevant, i.e. the
one such that r1 < r2.
Eq. (25) then directly yields a single solution for sin ΔI , pro-

vided the factor of sin ΔI in (25) is non-zero, i.e. provided r1, r2
and v are different from 0 and 1. This then results in a single solu-
tion for the last source, i.e. s3 = ΔI , provided the qubit phases are
initialized so as to meet −π

2
≤ ΔI ≤ π

2
.

5. MAXIMUM LIKELIHOOD ESTIMATION OF MIXING
MODEL PARAMETER

The approach described in Section 4 makes it possible to derive
the source vector from the considered observed vector, provided the
mixing parameter v = sin ΔE is known. In a given standard con-
figuration, ΔE is fixed but not known a priori, because this would
require very detailed knowledge of the system’s physical properties.
We here aim at estimating it blindly with an SSP method. In [1], we
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only proposed a very simple method for solving this type of problem,
using a moment-based procedure, which may therefore yield some
drawbacks [2]. Instead, we here introduce a maximum-likelihood
(ML) estimation procedure for the coupling model considered in
this paper, in order to benefit from the well-known advantages of
ML methods [2]. We therefore extend to the nonlinear BSS model
”DD4” the ML BSS method which has mainly been studied for lin-
ear mixtures [2]. In this statistical approach, the qubit values define a
random source vector S and the measured data define a random ob-
servation vector X = g(S). The joint probability density functions
(pdf) of these vectors are respectively denoted as fS(s) and fX(x).
Since we showed in Section 4 that the mixing function g is bijective,
we have

fX(x) =
fS(s)

|Jg(s)| (27)

where Jg(s) is the Jacobian of g, i.e. the determinant of the Jaco-

bian matrix whose entry (i, j) is equal to ∂gi

∂sj
. For the function g

considered in this paper, our calculations show that

Jg(s) = 8r21r
2
2(r

2
2 − r21)

q
1− r21

q
1− r22

p
1− v2v cosΔI .

(28)
Taking the logarithm of (27), and considering the case when the
sources are mutually statistically independent, we obtain

ln fX(x) =

3X
i=1

ln fSi
(si)− ln |Jg(s)|. (29)

GivenM samples of the observed vectorX, the ML estimator of the
mixing parameter v is obtained by maximizing (with respect to v)
the joint pdf of all these observations, which is equal to

L = fX(x1(1), x2(1), x3(1), · · · , x1(M), x2(M), x3(M)).
(30)

Assuming each source to be an independent and identically distributed
(i.i.d) random signal, each observed signal is also i.i.d, so that

L =
MY

i=1

fX (x1(i), x2(i), x3(i)) (31)

and lnL =

MX
i=1

ln fX(x1(i), x2(i), x3(i)). (32)

Maximizing L is equivalent to maximizing L = 1
M

lnL, which will
be denoted using the temporal averaging operator Et[.] as

L = Et[ln fX(x1(t), x2(t), x3(t))]. (33)

Using (29), we have

L =
3X

i=1

Et[ln fSi
(si(t))]−Et[ln |Jg(s(t))|]. (34)

A simple numerical procedure for (locally) maximizing L is the gra-
dient ascent algorithm, which consists in iteratively updating the pa-
rameter v to be optimized according to the rule

v(n+ 1) = v(n) + μ
∂L
∂v

˛̨̨
˛
v=v(n)

(35)

where μ is a positive adaptation rate. We now derive the gradient ∂L
∂v

of the cost function The score functions of the sources are defined as
follows (they are estimated if unknown, as in other BSS methods):

ψi(u) = −∂ ln fSi
(u)

∂u
∀i ∈ {1 . . . 3}. (36)

Taking into account
∂ ln |Jg|

∂v
= 1

Jg

∂Jg

∂v
, Eq (34) yields

∂L
∂v

= −
3X

i=1

Et[ψi(si)
∂si

∂v
]− Et[

1

Jg

∂Jg

∂v
]. (37)

The four terms of (37) have the following expressions for the mixing
function g considered in this paper. As explained in Section 4, s1
and s2 are derived from (18) and (24). They therefore do not depend
on v, i.e. ∂si

∂v
= 0 for i ∈ {1, 2}. The first two terms of (37) are

therefore zero. ∂s3

∂v
is then derived by moving p3 to the left-hand part

of (25) and rewriting this equation as F (s3, v) = 0. We consider this
equation for a fixed observed vector x and therefore for the resulting
fixed values of s1 and s2. We consider v as the independent variable
and s3 as the dependent variable. Implicit differentiation then yields

∂F

∂s3

∂s3

∂v
+
∂F

∂v
= 0. (38)

∂s3

∂v
is then derived from (38) by taking into account that simple

calculations yield

∂F

∂s3
= −2r1r2

q
1− r21

q
1− r22

p
1− v2v cosΔI (39)

∂F

∂v
= 2v(r22 − r21)− 2r1r2

q
1− r21

q
1− r22

1− 2v2

√
1− v2

sin ΔI .

(40)
Besides, Eq. (28) results in

∂Jg(s)

∂v
= 8r21r

2
2(r

2
2 − r21)

q
1− r21

q
1− r22

1− 2v2

√
1− v2

cos ΔI ,

(41)
which yields the last term in (37) and therefore the complete expres-
sion of the gradient of L used in our gradient ascent algorithm (35).

6. CONCLUSION

In this theoretical paper, we further bridged the gap between the
QIP/QP and SSP/BSS domains. We thus made a major step in the
”Blind Quantum Source Separation” (BQSS) field that we intro-
duced in [1]. From a BSS point of view, we addressed a nonlin-
ear mixture model, motivated by actual quantum physical systems.
We analyzed the invertibility and ambiguities of this model, and we
proposed practical methods for: (i) estimating the mixing parameter
with a ML procedure and (ii) restoring qubits, i.e. sources, from their
coupled versions. The next stages of this work will consist in testing
these methods with simulations of quantum systems, and introduc-
ing even more general quantum mixture models and BSS methods.
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