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ABSTRACT

We recently reported a criterion for blind separation of non-negative
sources, using a new concept called convex analysis for mixtures of
non-negative sources (CAMNS). Under some assumptions that are
considered realistic for sparse or high-contrast signals, the criterion
is that the true source signals can be perfectly recovered by finding
the extreme points of some observation-constructed convex set. In
our last work we also developed methods for fulfilling the CAMNS
criterion, but only for two to three sources. In this paper we propose
a systematic linear programming (LP) based method that is applica-
ble to any number of sources. The proposed method has two advan-
tages. First, its dependence on LP means that the method does not
suffer from local minima. Second, the maturity of LP solvers en-
ables efficient implementation of the proposed method in practice.
Simulation results are provided to demonstrate the efficacy of the
proposed method.

Index Terms— Blind separation, Non-negative sources, Convex
analysis criterion, Linear program

1. INTRODUCTION

The problem of blind separation of non-negative sources, or non-
negative blind source separation (nBSS), has received wide atten-
tion in a variety of fields, such as analytical chemistry [1], hyper-
spectral imaging [2], and biomedical imaging [3]. Existing methods
for solving the nBSS problem usually adopt the statistical assump-
tion that the sources are mutually uncorrelated or independent; e.g.,
non-negative independent component analysis (nICA) [4] which as-
sumes uncorrelated sources, and Bayesian positive source separa-
tion (BPSS) [5] which assumes independent sources. Recently, some
nBSS approaches requiring no assumption on source independence
or zero correlations have emerged. One such nBSS approach is the
non-negative matrix factorization (NMF) [6]. It decomposes the ob-
servation matrix as a product of two non-negative matrices, one serv-
ing as the estimate of the sources while the other the mixing matrix.
NMF, however, may be a non-unique decomposition and some reme-
dies have been suggested [7]. Here we are interested in another de-
terministic approach proposed by us recently, called CAMNS [8, 9].
CAMNS adopts a deterministic assumption called local dominance.
This assumption was initially proposed to capture the sparse char-
acteristics of biomedical images [10], but we found it a good as-
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sumption or approximation for high contrast images as well; e.g., the
human face separation example in Section 5. Under the local dom-
inant assumption and some standard nBSS assumptions, we proved
that the true source signals can be perfectly recovered by finding
the extreme points of an observation-constructed polyhedral set. We
also developed extreme-point search methods for CAMNS in our
last published work [8]. However, those previously proposed meth-
ods can handle up to three sources only.

In this paper we propose an extreme-point search method that
fulfils the CAMNS criterion for any number of sources. The idea is
to use LP to systematically locate all the extreme pints (which are
the true sources). As we will elaborate upon, the proposed LP-based
method does not suffer from local minima and can be implemented
efficiently. Our simulation results will show that this CAMNS-LP
method has promising separation performance.

2. SYSTEMMODEL

Consider a noise-free linear mixing signal model

x[n] = As[n], n = 1, . . . , L (1)

where s[n] = [ s1[n], . . . , sN [n] ]T is the source vector, x[n] =
[ x1[n], . . . , xM [n] ]T is the observation vector, A ∈ R

M×N is the
unknown mixing matrix, and L is the data length and we assume
L � max{M, N}. Note that (1) can be alternatively expressed as

xi =

N�

j=1

aijsj , i = 1, . . . , M, (2)

where aij is the (i, j)th element of A, sj = [ sj [1], . . . , sj [L] ]T

is the jth source signal vector and xi = [ xi[1], . . . , xi[L] ]T is the
ith observed signal vector. The CAMNS criterion to be presented is
based on the following assumptions:

(A1) All sj are componentwise non-negative; i.e., for each j, sj ∈
R

L
+ (a set of non-negative real L-vectors).

(A2) Each source signal vector is locally dominant, the definition
of which is as follows: For each i ∈ {1, . . . , N}, there exists
an (unknown) index �i such that si[�i] > 0 and sj [�i] = 0,
∀j �= i.

(A3) The mixing matrix has unit row sum; i.e., for all i =
1, . . . , M ,

N�

j=1

aij = 1. (3)
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(A4) M ≥ N andA is of full column rank.

Assumptions (A1) and (A4) are standard in nBSS [4]. Assump-
tion (A2) is special and instrumental to CAMNS. For high-contrast
sources or sparse sources which contain many zeros, (A2) may be
completely satisfied or serve as a good approximation. Assumption
(A3) is automatically satisfied in MRI due to the partial volume ef-
fect [10], and in hyperspectral images due to the full additivity con-
dition [2]. When (A3) is not satisfied, the normalization procedure
in [10] can be used to enforce (A3).

3. CONVEX ANALYSIS OF MIXTURES OF
NON-NEGATIVE SOURCES: THEORY

The purpose of this section is to provide a concise, self-contained
description to CAMNS [8,9]. Of particular significance is the nBSS
criterion derived from CAMNS, which will be stated in Theorem 2.

3.1. Some Basic Concepts of Convex Analysis

Before proceeding to describing CAMNS, it is useful to review sev-
eral basic results in convex analysis [11]. Given a set of vectors
{s1, . . . , sN} ⊂ R

L (a set of real L-vectors), the affine hull is de-
fined as

aff{s1, . . . , sN} = � x =
N�

i=1

θisi ����
θ ∈ R

N
,1

T
θ = 1 � , (4)

where θ = [ θ1, . . . , θN ]T and 1 is an all-one vector. An affine hull
can be represented by a polyhedral set, in form of

aff{s1, . . . , sN} = � x = Cα + d �� α ∈ R
P � (5)

for some (non-unique) d ∈ R
L and full column rank C ∈ R

L×P ,
where P is the affine dimension which must be less than N .

Given a set of vectors {s1, . . . , sN} ⊂ R
L, the convex hull is

defined as

conv{s1, . . . , sN} = � x =
N�

i=1

θisi ����
θ ∈ R

N
+ , 1

T
θ = 1 � .

(6)
A point x ∈ conv{s1, . . . , sN} is an extreme point of
conv{s1, . . . , sN} if x cannot be a nontrivial convex combination
of s1, . . . , sN , (more specifically, x �= � N

i=1 θisi for all θ ∈ R
N
+ ,� N

i=1 θi = 1, and θ �= ei for any i, where ei is anN ×1 unit vector
with the ith entry equal to 1).

A situation particularly relevant to this work is when
{s1, . . . , sN} is linearly independent. In this situation, the affine
dimension of aff{s1, . . . , sN} is P = N − 1. Moreover,
{s1, . . . , sN} is the set of extreme points of conv{s1, . . . , sN}.
To provide some insights into the concepts above, Fig. 1 shows the
geometry of an affine hull and convex hull for N = 3.

3.2. New nBSS Criterion by CAMNS

Let us turn our attention back to the nBSS problem stated in Sec-
tion 2, with the convex analysis concepts incorporated. From (A2), it
can be shown that the true source vector set {s1, . . . , sN} is linearly
independent. Based on the affine hull concepts described above, the
source affine hull aff{s1, . . . , sN} can be represented by

aff{s1, . . . , sN} = � x = Cα + d �� α ∈ R
N−1 �

� A(C, d)
(7)

s1

s2

s3

0

aff{s1, s2, s3} = {x = Cα + d|α ∈ R
2}

conv{s1, s2, s3}

Fig. 1. Example of 3-dimensional signal space geometry forN = 3.

for some (C,d) ∈ R
L×(N−1) × R

L such that rank(C) = N − 1.
In addition, from (2) and assumption (A3), each observation xi is
seen to be an affine combination of {s1, . . . , sN}; i.e.,

xi ∈ A(C,d) (8)

for all i = 1, . . . , M . The first key ingredient of CAMNS is identi-
fication of the source affine hull parameters (C,d) from the obser-
vations {x1, . . . , xM}. Consider the following theorem:

Theorem 1. ( Source affine set construction [8]) Under (A2) to
(A4), the observation affine hull is identical to the source affine hull:

A(C,d) = aff{x1, . . . , xM}. (9)

Moreover, (C,d) can be obtained from {x1, . . . , xM} by the fol-
lowing closed-form solution

d =
1

M

M�
i=1

xi, (10)

C = [ q1(UU
T ), q2(UU

T ), . . . , qN−1(UU
T ) ], (11)

whereU = [ x1 − d, . . . , xM − d ] ∈ R
L×M , and qi(R) denotes

the eigenvector associated with the ith principal eigenvalue ofR.

We should add that the above source affine set closed-form solution
is based on an optimization that finds an affine set that yields the best
fitting with respect to the observations [8].

Recall that the source signals are non-negative. Hence, we have
si ∈ aff{s1, . . . , sN} ∩ R

L
+ for any i. Let us define

S = aff{s1, . . . , sN} ∩ R
L
+ = A(C,d) ∩ R

L
+ (12)

= {x | x = Cα + d, x 	 0, α ∈ R
N−1} (13)

(where 	 is the componentwise inequality), which can be seen to
be a polyhedral set. The second important ingredient of CAMNS,
leading to a new nBSS criterion, is as follows:

Theorem 2. (CAMNS criterion [8]) Under (A1) and (A2), the set
S in (13) is also the source convex hull; that is,

S = conv{s1, . . . , sN}. (14)

Moreover, S has N extreme points given by the true source vectors
s1, ..., sN .

The theoretical implication of Theorem 2 is profound: It sug-
gests that the true source vectors can be perfectly identified by find-
ing all the extreme points of S . Hence, if we are able to develop re-
alizable methods for fulfilling the CAMNS criterion we can achieve
perfect blind separation in practice. There are simple methods of do-
ing this when N equals 2 or 3; see [8]. The next section considers
the situation where N is arbitrary.
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4. LINEAR PROGRAMMINGMETHOD FOR CAMNS

We now describe the main contribution of this paper, namely the
systematic LP-based method for fulfilling the CAMNS criterion.

We first concentrate on identifying one extreme point from S .
Consider the following linear minimization problem:

p
� = min

s

r
T

s

subject to (s.t.) s ∈ S
(15)

for some arbitrarily chosen direction r ∈ R
L, where p� denotes the

optimal objective value of (15). Using the polyhedral structure of S
in (13), problem (15) can be equivalently represented by an LP

p
� = min

α

r
T (Cα + d)

s.t. Cα + d 	 0.
(16)

A fundamental result in LP theory is that rT s, the objective
function of (15), attains the minimum at a point of the boundary of
S . To provide more insights, some geometric illustrations are given
in Fig. 2. We can see that the solution of (15) may be uniquely given
by one of the extreme points si [Fig. 2(a)], or it may be any point on
a face [Fig. 2(b)]. The latter case poses a trouble to our task of iden-
tifying si, but it is arguably not a usual situation. For instance, in the
demonstration in Fig. 2(b), r must be normal to s2 − s3 which may
be unlikely to happen for a randomly picked r. With this intuition in
mind, we prove in the Appendix that

Lemma 1. Suppose that r ∼ N (0, IL) (i.e., r being Gaussian dis-
tributed with zero mean and covariance matrix equal to L×L iden-
tity matrix). Then, with probability 1, the solution of (15) is uniquely
given by si for some i ∈ {1, ..., N}.

The idea behind Lemma 1 is to show that undesired cases, such as
that in Fig. 2(b) happen with probability zero.

00

r
r

s1
s1

s2
s2

s3
s3

(a) (b)

SS

optimal point optimal points

Fig. 2. Geometric interpretation of an LP.

We may find another extreme point by solving the maximization
counterpart of (15)

q
� = max

α

r
T (Cα + d)

s.t. Cα + d 	 0.
(17)

Using the same idea as above, we can show the following: Under
the premise of Lemma 1, the solution of (17) is, with probability 1,
uniquely given by an extreme point si different from that in (15).

Suppose that we have identified l extreme points, say, without
loss of generality, {s1, ..., sl}. Our interest is to refine the above

LP extreme-point finding procedure such that the search space is
restricted to {sl+1, ..., sN}. To do so, consider a thin QR decompo-
sition [13] of [s1, ..., sl]

[s1, ..., sl] = Q1R1, (18)

whereQ1 ∈ R
L×l is semi-unitary andR1 ∈ R

l×l is upper triangu-
lar. Let

B = IL − Q1Q
T
1 . (19)

We assume that r takes the form

r = Bw (20)

for some w ∈ R
L, and consider solving (16) and (17) with such

an r. Since r is orthogonal to the old extreme points s1, ..., sl, the
intuitive expectation is that (16) and (17) should both lead to new
extreme points. Interestingly, we found theoretically that expectation
is not true, but close. Consider the following lemma:

Lemma 2. Suppose that r = Bw, where B ∈ R
L×L satisfies (19)

and w ∼ N (0, IL). Then, with probability 1, at least one of the
optimal solutions of (16) and (17) is a new extreme point; i.e., si

for some i ∈ {l + 1, ..., N}. The certificate of finding new extreme
points is indicated by |p�| �= 0 for (16), and |q�| �= 0 for (17).

Lemma 2 is proven using the same concept as that in the Appendix.
We omit the proof due to lack of space here, and its details will be
given in [9]. By repeating the above described procedures, we can
identify all the extreme points s1, ..., sN . The resultant CAMNS-LP
method is summarized in the following steps:

Given an affine set characterization 2-tuple (C,d).
Step 1. Set l = 0, and B = IL.

Step 2. Randomly generate a vector w ∼ N (0, IL), and set r :=
Bw.

Step 3. Solve the LPs (16) and (17), and obtain their optimal solu-
tions, denoted by α�

1 and α�
2, respectively.

Step 4. If l = 0, then Ŝ = [ Cα�
1 + d, Cα�

2 + d ],
else
If |p�| �= 0, then Ŝ := [ Ŝ Cα�

1 + d ],
If |q�| �= 0, then Ŝ := [ Ŝ Cα�

2 + d ].

Step 5. Update l as the number of columns of Ŝ.
Step 6. Apply QR decomposition

Ŝ = Q1R1,

where Q1 ∈ R
L×l and R1 ∈ R

l×l. Update B := IL −
Q1Q

T
1 .

Step 7. Repeat Step 2 to Step 6 until l = N .

Let us consider the implementation issues of the above proposed
method, which depends on those of LPs. It is well known that LPs do
not suffer from local minima. Moreover, the LPs we encounter [(16)
or (17)] can be solved effectively by interior-point algorithms, with
a worst-case complexity of O(L0.5(L(N − 1) + (N − 1)3)) �
O(L1.5(N − 1)) for L � N [12]. Since the algorithm solves
2(N − 1) LP problems in the worst case, we infer that its worst-
case complexity isO(L1.5(N − 1)2). Based on Theorem 2, Lemma
1, Lemma 2, and the above discussion, we assert that

Proposition 1. Under (A1)-(A4), the CAMNS-LP method finds all
the true source vectors s1, ..., sN with probability 1. It does so with
a worst-case complexity of O(L1.5(N − 1)2).
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Fig. 3. Human face images: (a) the sources, (b) the observations, and (c) the extracted sources obtained by CAMNS-LP.

5. SIMULATIONS AND CONCLUSIONS

We synthetically generated 5 mixtures [Fig. 3(b)] from 5 human
face images [Fig. 3(a)]. The extracted sources obtained by CAMNS-
LP is displayed in Fig. 3(c). One can see that the extracted sources
are very similar to the original, with separation residuals only being
slightly noticeable in the 4th image.

Interested readers can visit http://www.ee.cuhk.edu.
hk/∼wkma/CAMNS/CAMNS.htm, where comparisons with nICA
[4] and NMF [6] can be found. The website also provides the MAT-
LAB source codes of CAMNS-LP.

In conclusion, we have presented a systematic LP-based method
for realizing the nBSS criterion by CAMNS. The proposed method
uses LPs to find the true source signals, the process of which is im-
mune to local minima. Moreover, the method is efficient in the sense
that its worst-case complexity is of the order of L1.5, where L is the
data length. Simulation results give a good validation of the blind
separability of the proposed method.

6. APPENDIX: PROOF OF LEMMA 1

Any point in S = conv{s1, ..., sN} can be equivalently represented
by s = � N

i=1 θisi, where θ 	 0 and θT 1 = 1. Then problem (15)
can be reformulated as

min
θ∈RN

� N

i=1 θiρi

s.t. θT 1 = 1, θ 	 0,
(21)

where ρi = rT si. We assume without loss of generality that ρ1 <

ρ2 ≤ · · · ≤ ρN . If ρ1 < ρ2 < · · · < ρN , then it is easy to
verify that the optimal solution to (21) is uniquely given by θ� = e1.
In its counterpart in (15), this translates into s� = s1. But when
ρ1 = ρ2 = · · · = ρP and ρP < ρP+1 ≤ · · · ≤ ρN for some P ,
the solution of (21) is not unique. In the latter case, the solution set
is Θ = {θ | θT 1 = 1, θ 	 0, θP+1 = · · · = θN = 0}.

We now prove that the non-unique solution case happens with
probability zero. Suppose that ρi = ρj for some i �= j, which
means that

(si − sj)
T
r = 0. (22)

Let v = (si − sj)
T r. Apparently, v follows a distribution

N (0, ‖si − sj‖
2). Since si �= sj , the probability Pr[ρi =

ρj ] = Pr[v = 0] is of measure zero. This in turn implies that
ρ1 < ρ2 < · · · < ρN holds with probability 1.
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