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ABSTRACT
In multiuser detection, the set of users active at any time may
be unknown to the receiver. A two-step detection procedure,
in which multiuser detection is preceded by active-user iden-
tification, is suboptimum. The optimum solution consists of
detecting simultaneously the set of active users and their data,
problem that can be solved exactly by applying Random-Set
Theory (RST). However, implementation of optimum detec-
tors can be limited by their complexity, which grows expo-
nentially with the number of potential users. In this paper we
illustrate how the complexity of optimum can be reduced. In
particular, Sphere Detection (SD) techniques (possibly in an
approximate version) are examined.

Index Terms— Signal detection, Complexity theory, Bayes
procedures, Stochastic processes.

1. INTRODUCTION

In multiuser detection (MUD), an important issue is that the
set of users that are active at a given time may be unknown
to the receiver. A simple solution to the problem of detect-
ing data in a multiuser system in which the number of active
users is unknown consists of a two-step procedure, in which
multiuser detection is preceded by active-user identification
(see, e.g., [6, 8]). In [3], the optimum solution is described:
instead of proceeding in two steps, the number of active users
and their data are detected simultaneously. Several scenarios
are examined in [3]: in the simplest among them, no a priori
information about user activity is available, and maximum-
likelihood detection is used. When a priori information is
available in the form of the probability that a user is active,
maximum a posteriori (MAP) detection can be performed. If,
in addition, a dynamic model is available for users logging in
and out of the system, the use of random-set theory (which we
argue to be the most natural tool for the analysis of random-
access systems: see, e.g., [3, 7]) allows one to describe the
evolution of the a posteriori probability of the set of active
users and their data. A further extension of the theory permits
estimation of users parameters (e.g., their power) in addition
to their data [2].

Applying the developments described above requires the
derivation of detectors whose complexity allows practical im-
plementation. This is precisely the goal of the present paper.
Here, sphere detection techniques (possibly in an approxi-
mate version) are applied to the implementation of the mul-
tiuser detectors. This paper is organized as follows. Section 2
describes the essentials of the sphere detection algorithm in
the form that is immediately applicable to the problem ex-
amined in this paper. Sections 3 examines sphere-detection-
based algorithms for the ML and MAP estimations of the ac-
tive users and their transmitted data, respectively, in an en-
vironment where the dynamic behavior of the users cannot
be accounted for, and detection must be undertaken at each
symbol interval. Section 4 describes simplified receivers ac-
counting for a Markov model of the users logging in and out
of the system. Numerical results are presented in Section 5,
and conclusions are drawn in Section 6.

2. SPHERE DETECTION

Consider the minimization of a function f(x1, . . . , xK) with
respect to its K arguments, all taking values in a discrete set
with M elements. While brute-force minimization involves
the evaluation of allMK values of f , SD simplifies the prob-
lem under the assumption that f can be written in the form of
a sum of nonnegative functions with an increasing number of
arguments:

f(x1, . . . , xK) (1)

=

K−1∑
k=0

fK−k,K−k+1,...,K(xK−k, xK−k+1, . . . , xK)

The minimization of (1) can be described graphically by using
an (K+1)-level tree graph whose paths merge into a common
uppermost node (level 0) to the MK leaves (level K). Each
node at level k emanatesM branches which join it to a node
at level k+1, each one being associated with a value of xK−k;
hence, each node at level k correspond to a value of the partial
sum of the first k terms of (1), and each terminal branch (or
leaf) to a value of f .
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Now, brute-force minimization of f can be interpreted
as the process of probing all the MK paths joining the root
node to all terminal leaves. SD simplifies the process as fol-
lows. Start from the root node and proceed downwards; at
level-k node (k = 0, . . . , K − 1), only one branch stemming
from it is chosen, that associated with the smallest value of
fK−k,K−k+1,...,K . This leads to a single node at level k + 1,
from which only one branch is chosen according to the same
criterion, etc. This is equivalent to computing sequentially,
for k = 0, . . . , K − 1,

x̂K−k = arg min
xK−k

fK−k,K−k+1,...,K(xK−k, x̂K−k+1, . . . , x̂K)

(2)
where x̂� denotes the value chosen for x�. At the end of this
process, we obtain a preliminary estimate of the minimum
value of f , which we call f̄ . Next, we proceed to probe the
branches that were left out, backtracking from the leaf associ-
ated with f̄ and excluding all the branches that will certainly
end up into a leaf corresponding to a value of f larger than
f̄ ). To do this, all branches emanating from a node are re-
moved from the tree (“pruned out”) whenever the value of the
partial sum at that node is already greater than f̄ . Whenever
a leaf is reached, if this is associated with a value f < f̄ , then
this new value replaces f̄ , and the procedure is continued.

3. SPHERE DECODING FOR ML AND MAP MUD

In this section we review theMUD approach based on random-
set theory (RST), as first advocated in [3], considering ML
and maximum a posteriori (MAP) detectors in situation where
decisions are made at each signaling interval.

3.1. Signal Model

We assume a random number of users transmitting digital data
over a common channel. We denote byK the maximum num-
ber of active users, and by s(x

(k)
t ) the signal transmitted at

discrete time t by the kth user, if active. Each signal has in
it a number of known parameters, reflected by a deterministic
function s(·), and a number of random parameters, summa-
rized by x

(k)
t . The observed signal at time t, denoted yt, in-

cludes s(x
(k)
t ), the signals generated by the users active at t,

which are in a random number, and stationary random noise
zt. Thus,

yt =
∑

k

s(x
(k)
t ) + zt (3)

Let Xt denote the random set encapsulating what is unknown
about the active users. We writeXt =

⋃K

k=1 X
(k)
t , whereX

(k)
t

is the singleton-or-empty set

X
(k)
t =

{
{x(k)

t } = {[k, x
(k)
t ]T } if user k is active at time t

∅ otherwise
(4)

Here, x(k)
t is a singleton whose element is the vector con-

taining the user index k and an unknown (possibly random)
parameter x

(k)
t . The latter takes values in the finite set M,

with cardinality |M| = M , representing the digital data trans-
mitted by user k at time t.
A simple model [3] for the random-set sequence {Xt}∞t=1

assumes the sets as independent and identically distributed,
with

fXt
(Xt) = M−|Xt|α|Xt|(1− α)K−|Xt| (5)

where |Xt| denotes the cardinality of Xt. With this model,
the users are independently active with the same probability
α, whereby the active users must be identified and possibly
decoded at each signaling interval.

3.2. Observation model

Under the assumption of power-controlled, direct-sequence
code-division multiple-access (DS-CDMA) with signature se-
quences of length N ≥ K, and of zero-mean additive white
Gaussian noise with power spectral density N0/2, we can
write, for the sufficient statistics of the received signal at time
t,

yt = Sxt + zt (6)

where yt is theN -dimensional column vector of the observa-
tions, S � [s1, . . . , sK ] is a N × K matrix whose columns
contain the signature sequences of all the potential K users,
and xt = xt(Xt) is aK-vector whose kth entry is defined as

xt(k) =

{
0 if X(k)

t = ∅
x

(k)
t otherwise

(7)

We have

fYt|Xt
(yt|Xt) =

1√
πN0

exp{−‖yt − Sxt‖2/N0} (8)

3.3. ML-based MUD

The (symbol-by-symbol) ML-basedMUD is the optimum (mi-
nimum-error-probability) receiver if all of the outcomes ofXt

are independent and equally likely. With this model, the ML
receiver generates

X̂t = arg max
Xt

ln fYt|Xt
(yt|Xt) = arg min

Xt

‖yt − Sxt‖2
(9)

To reduce the complexity of this receiver, sphere detection
can be applied. In fact, QR decomposition of S generates
a metric with the form (1) [1]: for example, if the transmit-
ted data are binary antipodal,1 the assumption of an unknown
number of users leads to three values possibly taken on by the
components of x, i.e., 0 and ±1.

1We make this assumption for simplicity’s sake only: the extension to a
more general case is straightforward.
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3.4. MAP-based MUD

We further consider a case wherein the parameterX is random
with the distribution (5). After QR decomposition of S, MAP
decision can be again performed using the SD algorithm [1].

4. MUD IN A DYNAMIC ENVIRONMENT: SPHERE
DETECTION ALGORITHM

The dynamic model described in [3] has the transition density
of the random set sequence Xt written in the form

fXt|Xt−1
(C | B) = fSt|Xt−1

(C ∩B)fNt|Xt−1
(C \ (C ∩B))

= M−|C∩B|μ|C∩B|(1− μ)|B|−|C∩B| (10)
M−|C\C∩B|α|C\C∩B|(1− α)K−|B|−|C\C∩B|

The above can be obtained by noticing thatXt = St∪Nt, with
St the set of surviving users still active from t− 1, and Nt the
set of new users becoming active at t. The symbol μ denotes
the probability of “persistence,” i.e., the probability that a user
survives from t − 1 to t, and α denotes the probability that a
new user arises. 2 Births and deaths of users are assumed
conditionally independent given Xt−1.
Given the above, the dynamics of the system are fully de-

scribed by the probability density function f(yt | Xt) of the
observation yt given the realization of the random set Xt (eq.
(8)) and by the transition probability f(Xt | Xt−1) (eq. (10)).
These two functions can be used as the ingredients of Bayes
recursions for countable sets: denoting y1:t � (y1, . . . ,yt)
the channel-output observations from time 1 to time t, we
have, for the conditional a posteriori densities,

f(Xt+1 | y1:t) =
∑
Xt

f(Xt+1 | Xt)f(Xt | y1:t)(11)

f(Xt+1 | y1:t+1) ∝ f(Xt+1 | y1:t)f(yt+1 | Xt+1)(12)

Thus, the optimum causal detector forXt+1 is obtained through
maximization of (12).
In [3], the above recursion is used to derive the optimal

causal estimator of Xt. The problem with (11)-(12) is that
the calculation of (11), and the evaluation of the maximum
in (12), have a complexity which grows exponentially with
K. Moreover, taking the logarithm of both sides of (12), the
problem is not amenable to SD since (11) does not admit a
decomposition as in (1).
A hint on how to proceed can be obtained by rewriting

(11) in the form∑
Xt

f(Xt+1 | Xt)f(Xt | y1:t) = f(Xt+1 | X̂t)f(X̂t | y1:t)

+
∑

Xt �=X̂t

f(Xt+1 | Xt)f(Xt | y1:t) (13)

2With some abuse of notation, we retain the same symbol α for the prob-
ability of a user to be active and the probability of a new user’s birth.

where X̂t is the MAP estimate from the previous interval. On
the other hand, for sufficiently large signal-to-noise ratio —
which is the region where Sphere Decoding yields a signifi-
cant complexity reduction over exhaustive search — the like-
lihood f(Xt | y1:t) exhibits a sharp peak around its maxi-
mum X̂t, whereby the term f(Xt+1 | X̂t)f(X̂t | y1:t) may be
conjectured to give the largest contribution (at least asymp-
totically). Thus, the Bayes recursions may be approximated
as:

f(Xt+1 | y1:t) ≈ f(Xt+1 | X̂t)f(X̂t | y1:t)

f(Xt+1 | y1:t+1) ≈ f(Xt+1 | X̂t)f(X̂t | y1:t)f(yt+1 | Xt+1)
(14)

Denoting

Λ(Xt+1 | y1:t+1) � −N0 ln f(Xt+1 | y1:t+1) ≈
Λ(X̂t | y1:t) + ‖yt+1 − Sxt+1‖2 −N0 ln f(Xt+1 | X̂t)

(15)
we have, under the approximation (14), the MAP estimate:

X̂t+1 = arg min
Xt+1

[‖yt+1 − Sxt+1‖2 −N0 ln f(Xt+1 | X̂t)
]

(16)
Introducing the QR decomposition S = QR, with (R)i,j =
0, i > j and denoting ỹ = Q†y, we have, after some algebra:

Λ(Xt+1 | ỹ1:t+1) =
∑K

i=1 gi

(
xt+1(K), . . . , xt+1(i)

)
−N0 ln f(π(Xt+1) | π(X̂t)) + N0|Xt+1| ln M

(17)
Sphere Decoding can be applied to maximize (17): decision-
feedback may be employed to make the preliminary decision
X̂

(DF )
t+1 , and Λ = Λ(X̂

(DF )
t+1 | ỹ1:t+1) is the reference value to

be adopted in the SD algorithm. For example, assuming that
userK belongs to Xt+1 leads to an increment

gK(xt+1(K)) + N0 lnM −N0

{
lnμ ifK ∈ X̂t

lnα otherwise

to be summed to the metric Λ(X̂t | y1:t) cumulated up to t
(see (15)): if the resulting metrics exceed Λ, ∀xt+1(K) �= 0,
and ifK /∈ X̂

(DF )
t+1 , then userK can be immediately estimated

as inactive. If this is not the case, a similar procedure can be
re-applied to the pair (K,K − 1): this requires enumerating
four possible situations, and evaluating the corresponding cu-
mulated metrics to be compared against Λ. This could allow
pruning out further paths.

5. NUMERICAL RESULTS

Consider now the performance of the proposed SD algorithm
for MUD in a dynamic environment. We examine error prob-
ability and algorithm complexity.
Assume the transmission of a known training sequence,

and estimation of the active users. Let the spreading sequences
bem-sequences. Moreover, assume a processing gainN = 7,
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K = 6, μ = 0.8, and α = 0.2. The frames have length
T = 10. The computational complexity of the SD-based re-
ceiver, measured as the average number of explored nodes per
decision, is represented in Fig. 1 versus SNR. As expected,
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Fig. 1. Complexity of the SD receiver and a receiver based
on exact recursions, for different values of SNR, in a training
phase.

SD is less and less complex as the SNR increases, while ex-
act Bayes recursions are exponentially complex, irrespective
of SNR. It should be observed again that SD is “optimum”
in the sense that it does not prune out any branch having an
overall metric smaller than the one chosen at the algorithm
termination, suboptimality being possibly due to our simpli-
fication of the algorithm. In order to demonstrate the validity
of such an approximation, we refer to Fig. 2, which is derived
under the same system parameters as Fig. 1. Fig. 2 shows the
set-sequence error probability (SSEP), defined as

SSEP � P
(
X1:T �= X̂1:T

)
(18)

for varying SNR. Inspecting Fig. 2 shows that the loss caused
by our approximation with respect to exact Bayes recursions
is irrelevant on the whole range of examined SNR.
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Fig. 2. Set-sequence error probability (SSEP) for the SD re-
ceiver and a receiver based on exact recursions, for different
values of SNR, in a training phase.

6. CONCLUSIONS

We have examined multiuser detectors operating without in-
formation as of the number of active users, and hence detect-
ing simultaneously the set of active users and their data. Since
implementation of optimum detectors can be limited by their
complexity, which grows exponentially with the number of
potential users, we have derived techniques for the reduction
of this complexity. In particular, sphere-detection (SD) tech-
niques (possibly in an approximate version) were examined.
SD algorithms have been derived for ML and MAP detectors
in a static environment, while for a dynamic environment a
simplification can be introduced which enables the applica-
tion of SD with a marginal loss in performance. The perfor-
mance of these detectors has been assessed in terms of set-
sequence error probability and of complexity.
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