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ABSTRACT

The Shalvi-Weinstein super-exponential algorithm for blind chan-
nel equalization employs empirical high-order cross-cumulants
between the equalizer’s input and output for iterative updates of
the equalizer. When the source signal has (nearly) null cumulants
of the required order, the algorithm’s performance may be severely
degraded. Rather than resort to even higher-order cumulants in
such cases, we propose to employ an alternative statistic, based on
second-order derivatives (Hessians, evaluated away from the ori-
gin) of the joint log-characteristic function of the equalizer’s input
and output. These Hessians admit straightforward empirical es-
timates, maintain the “philosophy of operation” of the algorithm,
and, as we demonstrate in simulation, can signi cantly improve its
performance in such (and in other) cases.

Index Terms— super-exponential, blind equalization,
characteristic function, Hessian, charrelation matrix.

1. INTRODUCTION

The super-exponential (SupEx) algorithm (Shalvi and We-
instein, [4]) for blind channel equalization is a powerful,
rather popular tool for fast iterative construction of nite
equalizers for unknown (possibly nonminimum-phase) lin-
ear, time-invariant (LTI) channels driven by an input of in-
dependent, identically distributed (iid) samples (with an un-
known distribution). Based on empirical high-order joint
cumulants of the equalizer’s output and input, the equal-
izer’s taps are modi ed iteratively, until convergence is at-
tained, usually within a very small number (4-5) of itera-
tions. It has been shown ([4, 5]) that under some regularity
conditions, and barring effects of the nite equalizer length,
the algorithm is free of local stationary points. Thus, if
the relevant cumulants of the channel’s input are nite and
non-zero, and the equalizer is long enough, then asymptot-
ically (as the observation length tends to in nity), SupEx
converges to the exact equalizer (up to irrelevant delay and
scaling).
However, if the source signal’s cumulants of the re-

quired order are null, the algorithm is unable to produce

any useful equalizer. Moreover, under non-asymptotic con-
ditions, errors in the estimates of the cumulants naturally
affect the performance of the equalizer, and this effect is
more adverse for sources with a relatively small (nearly-
vanishing) cumulant of the required order.
In such cases it might therefore be desirable to resort

to some other statistics, whose estimates can be more in-
formative for the construction of the equalizer. For exam-
ple, cumulants of an alternative, higher order are a natural
choice for the super-exponential algorithm, maintaining its
general structure and philosophy. Indeed, if the sources are
not Gaussian, they must have non-zero cumulants of some
order (higher than second). For symmetrically-distributed
sources, all odd-order cumulants vanish, so if, for exam-
ple, the fourth-order cumulant is zero, it is possible to try
to work with the sixth-order cumulant, and so forth. And
yet, the estimation of cumulants of very high orders (higher
than, say, six) is usually not desirable, since such estimates
often (but not always) have a relatively large variance and,
in addition, are somewhat cumbersome to construct.
In this paper we propose an alternative statistic as a sub-

stitute to cumulants. Our statistic is based on estimates
of the Hessian (second-order derivative matrix) of the log
characteristic function (LCF) of the joint distribution of
the equalizer’s input and output. Despite this apparently
complex terminology, this statistic turns out to admit very
straightforward, intuitively appealing empirical estimates,
and, moreover, it maintains the “philosophy of operation”
of SupEx. Using simulation results, we demonstrate the po-
tential performance improvement resulting from the use of
our alternative statistics for SupEx, in lieu of cumulants.

2. OFF-ORIGIN HESSIANS OF THE LCF

Off-origin Hessians of the LCF are a relatively new emerg-
ing tool, offering a “hybrid” statistic, conceptually recon-
ciling second-order statistics with (classical) higher-order
statistics. While high-order joint cumulants of any ran-
dom vector are high-order derivatives of its LCF at the ori-
gin, one may consider remaining at the comfortable second-
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order differentiation, but moving away from the origin. Just
like the second-order derivatives (Hessians) at the origin,
which are simply the covariance matrices (or correlation
matrices for zero-mean vectors), off-origin Hessians main-
tain the convenient form of matrices, rather than the form
of tensors (multi-way arrays, which represent higher-order
derivatives). In the sequel we shall refer to these matrices as
“charrelation” (pronounced “car-relation”) matrices (substi-
tuting correlation matrices), re ecting their link to the char-
acteristic function.
The use of off-origin derivatives (of arbitrary order) of

the LCF seems to have been rst proposed by Gürelli and
Nikias in [2] in the context of various array-processing ap-
plications, but has not been further pursued by these authors
in open literature since. More recently, the use of second-
order off-origin derivatives has been proposed by Yeredor
et al. in various contexts, such as blind source separation
[6], Direction of Arrival (DOA) estimation [8] and autore-
gressive (AR) parameters estimation [9]. Off-origin deriva-
tives have also been used by Kawanabe and Theis [3] and
by Comon and Rajih [1].
Let the K × 1 vectors x and τ denote (respectively)

some random vector and an arbitrary (deterministic) vector.
We shall refer to τ as a “processing point”. The (general-
ized) characteristic function (CF) and the LCF are de ned,
respectively, as

φx(τ )
�
= E[eτ

T x] , ψx(τ )
�
= log(φx(τ )), (1)

whenever the mean exists. TheK × 1 gradients andK ×K
Hessian of ψx(τ ) are de ned, respectively, as:

ψx(τ )
�
=

∂T ψx(τ )
∂τ

∣∣∣∣
τ

, Ψx(τ )
�
=

∂2ψx(τ )
∂τ 2

∣∣∣∣
τ

. (2)

The Hessian Ψx(τ ) will serve as our alternative
“charrelation” matrix. The following general properties
(see, e.g., [9] for proof) would be useful in our derivations:

Property 1. If x can be partitioned into statistically inde-
pendent groups, thenΨx(τ ) is block-diagonal (with the re-
spective partition(s)). Namely, two statistically independent
random vectors are not only uncorrelated, but also “un-
charrelated”.

Property 2. If x can be expressed as a linear transforma-
tion of another random vector a ∈ R

L, namely x = Ha
whereH is anyK × L matrix, then

Ψx(τ ) = HΨa(HT τ )HT , (3)

where Ψa(HT τ ) is the charrelation matrix of a at HT τ .
Thus, the effect of a linear transformation on the charrela-
tion matrix resembles its effect on the correlation matrix.

It is shown in [6, 9] that consistent (and convenient) es-
timates of the charrelation matrix, based on N realizations
xn of x, can be obtained as a “specially weighted” empiri-
cal covariance from:

Ψ̂x(τ ) =
∑N

n=1 wn(xn − x̄)(xn − x̄)T∑N
n=1 wn

(4)

where the “weights”wn are given bywn = exp(τT xn) and
where x̄ denotes a similarly weighted (generally non-zero)
mean, x̄ �

= (
∑

n wnxn)/(
∑

n wn).

3. THE SUPEX ALGORITHM

To establish the baseline for our proposed modi cation, we
now provide a brief overview of the SupEx algorithm, em-
phasizing aspects which are relevant to our proposed mod-
i cation (for convenience, we shall use the notations of
[4]). Let H = {h�} denote the impulse-response of an
unknown LTI channel (system), whose input is the zero-
mean sequence {an} of iid variables (with an unknown,
non-Gaussian distribution), such that its output is given by
yn = h� ◦ an, where ◦ denotes the convolution operation.
It is desired to construct an equalizer C = {c�}, such that
its output (given its input {yn}), zn = c� ◦ yn

�
= s� ◦ an

is at most a scaled and delayed version of the source signal
an; Namely the “combined system” S = {s�} = {c� ◦ h�}
is given by {s�} = {α · δ�−k}, where α is some arbitrary
(nonzero) constant, k is some arbitrary (integer) delay, and
δn denotes Kronecker’s delta function. For simplicity of
the exposition, we shall assume hereinafter that all signals /
channels involved are real-valued.
The “philosophy of operation” behind the SupEx algo-

rithm is the following: suppose that we could employ an
iterative procedure, such that in each iteration the combined
system S be modi ed as follows:

s′n := βsp
n (5)

(and then S = {s′n}), where p > 1 is some integer, and
β is some (indirect) normalization coef cient, which may
be different in each iteration. Then evidently, the ratio (in
magnitude) between the largest tap and all other taps would
be iteratively increased until the smaller taps vanish (due to
the scaling constraint), and the desired response is obtained
at a stationary point.
Although we do not have direct access to S, but only to

C, it turns out that we can effectively approximate this de-
sired process. Assume, from now on, that both the channel
H and the equalizer C are of nite lengthsM and L, respec-
tively. Let an (M + L − 1) × L Toeplitz matrixH be con-
structed asHij = hi−j (being zero when i−j /∈ [0,M−1]),
and de ne anL×1 vector c �

= [c0 c1 · · · cL−1]T . The com-
bined system response vector s �

= [s0 s1 · · · sM+L−1]T is
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then given, for any equalizer c, by

s = Hc. (6)

Now, as mentioned above, in each iteration we would like
to change s into s′ = g, where g is an (M + L − 1) × 1
vector, whose n-th element is sp

n (prior to the normalization
operation). Usually, g does not belong to the range-space
of H , and therefore exact equality cannot be attained by
any equalizer c. Nevertheless, the value of c which mini-
mizes the least-squares (LS) distance between s′ and g is
well known to be given by:

min
c

‖Hc′ − g‖2; ⇒ c′ = (HT H)−1HT g. (7)

Luckily, we can obtain consistent estimates of the desired
c′ (up to irrelevant scaling) as follows. Let us de ne the
L × 1 random vector y and the (M + L − 1) × 1 random
vector a such that y

�
= [yn yn−1 · · · yn−L+1]T , a

�
=

[an an−1 · · · an−M−L+2]T and

y = HT a (8)

(where, due to the stationarity, the statistical properties of y
and a do not depend on n). We now observe that

• The correlation matrix of y is given by
Ryy = E[yyT ] = HT E[aaT ]H = σ2

a · (HT H),
(9)

where σ2
a denotes the variance of an;

• The joint-cumulants vector dyz , whose k-th element
is de ned as dk

�
= cum{z : p; yk} (here yk denotes

the k-th element of y and cum{·} denotes the joint
cumulant) is given by (see [4] for a simple proof)

dyz = cum{a : p + 1} · HT g. (10)

Since bothRyy and dyz can be consistently estimated from
the observed signal {yn} and the equalizer’s output {zn},
the desired updated equalizer c′ of (7) can be consistently
estimated (up to irrelevant scaling) as well.
Thus, the super-exponential algorithm proceeds as fol-

lows (batch version): First, the correlation matrix Ryy is
empirically estimated from the channel’s output sequence
{yn}. Then, in each iteration the output sequence {zn} =
{cn} ◦ {yn} of the current equalizer is computed, and the
cross-cumulants vector dyz is empirically estimated. An
updated equalizer is then computed and normalized using

c′ := R̂
−1

yy d̂yz , c′′ := c′/
√

c′T c′, (11)

and a new iteration is applied with the new equalizer c = c′′.
A common value of p (used especially for symmetri-

cally distributed sources) is p = 3, implying the use of
fourth-order cross-cumulants in dyz . Convergence is typi-
cally attained (for sources with strong kurtosis) within 4−5
iterations.

4. THE PROPOSED MODIFICATION

To propose our alternative statistic, let us rst de ne an (L+
1) × 1 vector x as follows:

x
�
=

[
y
z

]
=

[
HT

cT HT

]
· a �

= H̃a. (12)

From Property 2 above it follows that at any processing-
point τ , the “charrelation” matrix of x is given by

Ψx(τ ) = H̃Ψa(H̃T τ )H̃T . (13)

Let us now choose τ = [0T τ ]T , where 0 denotes an
L × 1 all-zeros vector and τ is a scalar parameter. We
then have H̃T τ = τHc = τs. Now, by Property 1,
Ψa(H̃T τ ) = Ψa(τs) is a diagonal matrix (since a has iid
elements), which we shall denote Λ(τs)

�
= diag{λ(τs)},

where

λ(τs) = [ψ′′
a(τs1) ψ′′

a(τs2) · · · ψ′′
a(τsM+L−1]T . (14)

We now partition Ψx(τ ) (denoted Ψx(τ) for convenience,
since τ now depends on a single parameter τ ) as follows,

Ψx(τ) =
[

P yy(τ) pyz(τ)
pzy(τ) pzz(τ)

]
, (15)

where P yy(τ) is L × L, pyz(τ) = pT
zy(τ) is L × 1 and

pzz(τ) is a scalar. Concentrating on pzy(τ), from (12), (13)
and (14) we obtain

pyz(τ) = HT Λ(τs)Hc = HT Λ(τs)s
�
= HT ḡ (16)

where ḡ is an (M + L− 1)× 1 vector whose n-th elements
is given by ψ′′

a(τsn)sn. Now, let us de ne

d̃yz
�
= ryz − pyz(τ) = HT (σ2

as − ḡ)
�
= HT g̃, (17)

where ryzdefeqE[yz] = E[HT aaT Hc] = σ2
aHT s is

the cross-correlation vector between y and z. The n-th ele-
ment of g̃ is given by (σ2

a −ψ′′
a(τsn))sn, which can also be

expressed as fτ (sn)sn, where

fτ (sn)
�
= σ2

a − ψ′′
a(τsn) (18)

is a function of sn (continuous under some regularity condi-
tions), being zero for sn = 0 (since the second derivative of
the LCF at the origin is the variance), with a monotonically
increasing magnitude at least in some vicinity of sn = 0. A
typical example of fτ (s) is depicted in Fig.1.
Thus, fτ (sn) can be regarded as playing in g̃ the same

role that sp−1
n plays in g. In other words, if d̃yz is used

in (11) instead of dyz , the effect on the update of s′ in (5)
becomes

s′n := βfτ (sn)sn, (19)
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Figure 1: fτ (s) (with τ = 4.0) for the source distribution used in
the simulation. The exact expression is fτ (s) =

qA2+(1−q)B2

3
−

q
[

1
(τs)2

− A2

sinh2(Aτs)

]
− (1 − q)

[
1

(τs)2
− B2

sinh2(Bτs)

]
, see text for

values of A, B, q.

rather than s′n = βsp
n; Nevertheless, the “poor gets poorer”

effect is similar: since fτ (sn) is monotonically increasing
with the magnitude of sn, it follows that in each iteration
any values in S smaller in magnitude than the peak become
(relatively) even smaller, until they converge to zero. This
is the same ”philosophy of operation” as in the original ver-
sion of SupEx, but it is not based on cumulants, but rather
on estimated ”charrelations”.
Straightforward empirical estimates of d̃yz can be ob-

tained from (recall (4))

ˆ̃
dyz =

1
N

∑
n

ynzn −
∑

n wn(yn − ȳ)(zn − z̄)∑
n wn

, (20)

where ȳ
�
=

∑
n wnyn∑

n wn
, z̄

�
=

∑
n wnzn∑

n wn
and where, due to

the special structure of τ , the “weights” wn are given by
wn = exp(τzn).

5. SIMULATION RESULTS, CONCLUSION

To demonstrate the potential improvement in performance,
we applied the modi ed algorithm using the following
channel / equalizer setup (similar to that in [4]): the channel
was {h�} = {0.4 1 − 0.7 0.6 0.3 − 0.4 0.1} and the
equalizer length was 16, initialized as all-zeros with a 1 at
the fourth tap.
The source distribution was qU(A) + (1 − q)U(B),

whereU(θ) denotes the Uniform symmetric distribution be-
tween −θ and θ. When A = 3(1 +

√
2), B = 3 −√

2 and
q = 0.25, this zero-mean source has unit variance and a null
kurtosis. To salvage the 4th-order SupEx from total failure,
we slightly changed these conditions, using the same A and
B, but with q = 0.2.
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Figure 2: Empirical ISI (in [dB], averaged over 400 trials), for SupEx
based on 4th order, on 6th order cumulants, and on the proposed Hessian
with τ = 4.0.

Performance is presented in Fig.2 in terms of the result-
ing (empirical) Inter-Symbol Interference (ISI) vs. the ob-
servation length N , for SupEx based on 4-th order cumu-
lants, on 6-th order cumulants and on the proposed Hessian
(using τ = 4.0). Signi cant improvement of the Hessian-
based version over the cumulants-based version is evident.
In general, the performance would obviously depend on

the selection of τ . Combining several values of τ (namely,
using several estimates in parallel) is also possible. How-
ever, a strategy for optimizing the selection(s) of τ , as well
as analytical performance evaluation, are currently the sub-
jects of on-going further research.
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