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ABSTRACT

An adaptive channel estimation scheme, exploiting the over-
sampled complex exponential basis expansion model (CE-
BEM), is presented for doubly-selective channels where we
track the BEM coefficients via a multiple model approach.
In the past work the number of BEM coefficients used to
model the doubly-selective channels for channel estimation
has been based on an upperbound on the channel Doppler
spread. Higher the Doppler spread, more the number of BEM
coefficients leading to higher channel estimation variance. In
this paper we propose to use a multiple model framework
where several candidate Doppler spread values are used to
cover the range from zero to an upperbound, leading to mul-
tiple CE-BEM channel models, each corresponding to an as-
sumed value of the Doppler spread. Subsequently the well-
known interacting multiple model (IMM) algorithm is used
for symbol detection based on multiple state-space models
corresponding to the multiple estimated channels. A simula-
tion example is presented to illustrate the proposed approach.

Index Terms— Doubly-selective channels, adaptive chan-
nel estimation, basis expansion models, IMM algorithm

1. INTRODUCTION
Due to multipath propagation and Doppler spread, wireless
channels are characterized by frequency- and time-selectivity.
Accurate modeling of time-variations of the channel plays a
crucial role for estimation and tracking purposes. Recently,
basis expansion models (BEM) have been widely investigated
to represent doubly-selective channels in wireless applications
[2, 3, 4, 5]. Candidate basis functions include complex expo-
nential (Fourier) functions [2, 3], polynomials [4], and dis-
crete prolate spheroidal sequences [5], etc.
Complex exponential basis expansion model (CE-BEM)

has been used in [2, 3, 6]. Ref. [3] deals with time-multiplexed
training sequence design for block transmissions; their solu-
tion is briefly discussed later in Sec. 2.3. Ref. [3] deals with
critically sampled CE-BEM; [6] has shown that oversampling
in the Doppler domain leads to more accurate channel model-
ing. In [2, 3, 6], in order to “accurately” model the underlying
doubly-selective channel, the number of BEM coefficients (Q
in Sec. 2) used to model the doubly-selective channels for
channel estimation has been based on an upperbound on the
channel Doppler spread. Higher the Doppler spread, more
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the number of BEM coefficients leading to higher channel es-
timation variance. This, in turn, leads to higher bit error rate
(BER) when the estimated channel is used for data detection
and the actual Doppler spread is (much) less than the upper-
bound.
In this paper we propose to use a multiple model frame-

work where several candidate Doppler spread values are used
to cover the range from zero to an upperbound, leading to
multiple CE-BEM channel models, each corresponding to an
assumed value of the Doppler spread. Subsequently the well-
known interacting multiple model (IMM) algorithm [9] is used
for symbol detection based on multiple state-space models
corresponding to the multiple estimated channels.
Notations: Superscripts T andH denote the transpose and

conjugate transpose operations, resp. IN is theN×N identity
matrix, 0M is the M -column null vector and 0k×M is the
k×M null matrix. We use �·� for integer ceiling. The symbol
E {·} denotes expectation.

2. SYSTEMMODEL AND BACKGROUND

2.1. Received Signal

Consider a doubly-selective (time- and frequency-selective)
FIR (finite impulse response) linear channel. Let {s (n)} de-
note a scalar sequence which is input to the time-varying chan-
nel with discrete-time response {h (n; l)} (channel response
at time n to a unit input at time n− l). Then the symbol-rate
noisy channel output at the rth receive antenna is given by
(n = 0, 1, · · · ; r = 1, 2, · · · , R)

y(r)(n) =
L∑

l=0

h(r)(n; l)s(n− l) + v(r)(n) (1)

where v(r)(n) is the zero-mean white comples-Gaussian noise
with variance σ2

v . We assume that
{
h(r)(n; l)

}
(r = 1, · · · , R)

represents a wide-sense stationary uncorrelated scattering (WS-
SUS) vector channel [1].

2.2. CE-BEM

In CE-BEM [2, 3, 6], over the k-th block consisting of an ob-
servation window of TB symbols, the channel is represented
as (n̄k := (k − 1)TB)

h(r)(n; l) =

Q∑
q=1

h(r)
q (l)ejωqn, n = n̄k, · · · , n̄k + TB − 1,

(2)
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where one chooses (l = 0, 1, · · · , L, andK is an integer)

T := KTB , K ≥ 1, Q ≥ 2 �fdTTs�+ 1, (3)

ωq :=
2π

T
[q − (Q + 1) /2] , q = 1, 2, · · · , Q, (4)

L := �τd/Ts� , (5)

τd and fd are respectively the delay spread and the Doppler
spread, and Ts is the symbol duration. The BEM coefficients
h

(r)
q (l)’s remain invariant during this block, but are allowed
to change at the next block, and the Fourier basis functions{
ejωqn

}
(q = 1, 2, · · · , Q) are common for each block. If the

delay spread τd and the Doppler spread fd of the channel (or
at least their upper-bounds) are known, one can infer the basis
functions of the CE-BEM [3]. Treating the basis functions
as known, estimation of a time-varying process is reduced to
estimating the invariant coefficients over a block of length TB

symbols. Note that the BEM period is T = KTB whereas
the block size is TB symbols. If K > 1 (e.g. K = 2 or K =
3), then the Doppler spectrum is said to be over-sampled [6]
compared to the case K = 1 where the Doppler spectrum is
said to be critically sampled. In [2, 3] onlyK = 1 (henceforth
called CE-BEM) is considered whereas [6] considers K ≥ 2
(henceforth called over-sampled CE-BEM).

2.3. Block-Adaptive Channel Estimation [3]

Here we summarize the time-multiplexed training approach
of [3]. In Sec. 4 we provide simulation comparisons with re-
sults of [3]. In [3] each transmitted block of symbols {s(n)}TB−1

n=0
is segmented into P subblocks of time-multiplexed training
and information symbols. Each subblock is of equal length
lb symbols with ld information symbols and lt training sym-
bols (lb = ld + lt). If s denotes a column-vector composed of
{s(n)}TB−1

n=0 , then s is arranged as

s :=
[
bT

0 cT
0 bT

1 cT
1 · · · bT

P−1 cT
P−1

]T (6)

where bp (p = 0, 1, · · ·P − 1) is a column of ld information
symbols and cp is a column of lt training symbols. We clearly
have TB = Plb. Given (1) and CE-BEM (2), [3] has shown
that (6) is an optimum structure forK = 1 with lt = 2L + 1,
P ≥ Q and

cp :=
[
0T

L γ 0T
L

]T
, γ > 0. (7)

Thus, given a transmission block of size TB , (2L+1)P sym-
bols have to be devoted to training and the remaining TB −
(2L+1)P are available for information symbols. This design
has been used by others for oversampled CE-BEM also [6].
Let np := plb + ld + L, (p = 0, 1, · · ·P − 1), denote

the location of (nonzero) γ’s in the optimum cp’s in the P
subblocks. Then by design, received signal (assuming timing
synchronization)

y(r)(np + l) = γh(r)(np + l; l) + v(r)(np + l) (8)

for l = 0, 1, · · · , L. Using (2) in these y(r)(np + l)’s, one
can uniquely solve for h(r)

q (l)’s via a least-squares approach.
The channel estimates are given by the CE-BEM (2) using the
estimated BEM coefficients.

2.4. Objectives

Suppose that we collect the received signal over a time in-
terval of T̄ symbols. We wish to estimate the time-variant
channel using a channel model and time-multiplexed training
(such as that discussed in Sec. 2.3 and [3]), and subsequently
using the estimated channel, estimate the information sym-
bols. For CE-BEM, if we choose T̄ as the block size, then
in general Q value will be very high requiring estimation of
a large number of parameters, thereby degrading the channel
estimation performance. If we divide T̄ into blocks of size
TB , and then fit CE-BEM block by block, we need smallerQ.
This is the solution considered in this paper (and also [3]). In
practical situations, over a large T̄ , the actual Doppler spread
fd is likely to vary. Absent any prior knowledge, a commonly
used solution [3, 6] is to use an upperbound on the antici-
pated fd (based on the maximum vehicle speed, e.g.) and pick
Q accordingly. In this paper we investigate a multiple model
framework where several candidate Doppler spread values are
used to cover the range from zero to an upperbound, leading
to multiple CE-BEM channel models, each corresponding to
an assumed value of the Doppler spread. Multiple model ap-
proach has been extensively used in target tracking applica-
tions [9, 10, 11] and more recently, has been used for tracking
dispersive DS-CDMA channels using multiple autoregressive
(AR) models in [8]. In this paper we propose to use such an
approach in conjunction with BEM’s.

3. MULTIPLE MODEL APPROACH
3.1. Multiple Models

Let fd,u denote an upperbound on the anticipated Doppler
spread fd. Let fd,1, fd,2, · · · , fd,M denote our M candidate
Doppler spreads and let Qm, 1 ≤ m ≤ M , denote the corre-
sponding values of Q from (3). [In Sec. 4 we pickedM = 3
with Q1 = 1 (time-invariant model with fd,1 = 0 Hz), Q2 =
3 and Q3 = 5 (time-variant models with fd,2 = 100 Hz and
fd,3 = 200 Hz, respectively).] Then we have M candidate
channel impulse responses indexed by m over the k-th block
consisting of an observation window of TB symbols at the rth
receive antenna, given by

h(m,r)(n; l) =

Qm∑
q=1

h(m,r)
q (l)ejωqn, n = n̄k, · · · , n̄k+TB−1.

(9)
We will use a Kalman filter with equalization delay d for data
detection using the estimated channel. Define

y (n) :=
[
y(1)(n) y(2)(n) · · · y(R)(n)

]T
,

sd (n) :=
[
s (n) s (n− 1) · · · s (n− d)

]T
,

s̄ (n) := E {s (n)} , s̃ (n) := s (n)− s̄ (n) ,

Φ :=

[
0T

d 0
Id 0d

]
, Γ :=

[
1 0T

d

]T
,

H
(m)
d (n) :=

[
h(m) (n; 0) · · · h(m) (n;L) 0R×d−L

]T
,

h(m)(n; l) :=
[
h(m,1) (n; l) · · · h(m,R) (n; l)

]T
,
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where v(n) is defined just as y(n) and integer d ≥ L. As-
sume data symbols are zero-mean and white. If s (n) is a data
symbol, we have s̄ (n) := 0, s̃ (n) := s (n); if s (n) is a train-
ing symbol, s̄ (n) := s (n), s̃ (n) := 0. Then the underlying
state-space model corresponding to the mth channel is given
by the state and the measurement equations

sd (n) = Φsd (n− 1) + Γs̄ (n) + Γs̃ (n) , (10)

y (n) = H
(m)T
d (n) sd (n) + v (n) . (11)

In (10) s̄(n) and s̃(n) are defined just as sd(n).

3.2. Channel Estimation

Consider a set of TB received symbols divided up into P sub-
blocks as in Sec. 2.3. For modelm, we estimate the BEM co-
efficients h

(m,r)
q (l) via the least-squares approach of Sec. 2.3

using the training symbols. Then the estimated channel for
themth model is given by ĥ(m,r)(n; l) =

∑Qm

q=1 ĥ
(m,r)
q (l)ejωqn.

Table 1. Summary Of The IMM Algorithm (One Cycle)
Interaction (i, j = 1, 2, · · ·M ):
predicted mode probability: μ−

j (k) =
∑

i pijμi(k − 1)

mixing probability: μi|j = pijμi(k − 1)/μ−
j (k)

ŝ0dj(k − 1|k − 1) =
∑

i ŝdi(k − 1|k − 1)μi|j

V0dj(k − 1|k − 1) =
∑

i Vdi(k − 1|k − 1)μi|j + Xj

where the “spread-of-the-means” term in the mixing is
Xj =

∑
i[ŝdi(k − 1|k − 1)− ŝ0dj(k − 1|k − 1)]

×[ŝdi(k − 1|k − 1)− ŝ0dj(k − 1|k − 1)]Hμi|j

Filtering (i, j = 1, 2, · · ·M ):
ŝdj(k|k − 1) = Φŝ0dj(k − 1|k − 1) + Γs̄(k)

Vdj(k|k − 1) = ΦV0dj(k − 1|k − 1)ΦH + σ2
s̃ΓΓT

measurement residual: zj = y(k)−Hdj ŝdj(k|k − 1)

residual cov.: Dj = H
(j)
d Vdj(k|k − 1)H

(j)H
d + σ2

vIR

fliter gain: Gj = Vdj(k|k − 1)H
(j)H
d D−1

j

ŝdj(k|k) = ŝdj(k|k − 1) + Gjzj

Vdj(k|k) = Vdj(k|k − 1)−GjDjG
H
j

likelihood function: Λj = [det(πDj)]
−1e−z

H
j D

−1

j
zj

mode probability: μj(k) =
μ
−

j
Λj∑

i
μ
−

i
Λi

Combination:
ŝd(k|k) =

∑
j ŝdj(k|k)μj

Vd(k|k) =
∑

j Vdj(k|k)μj + X

where the “spread-of-the means” term in combination is
X =

∑
i[ŝdi(k|k)− ŝd(k|k)][ŝdi(k|k)− ŝd(k|k)]Hμi(k)

3.3. Interacting Multiple Model Data Detection

Using theM estimated channels from each block of received
symbols, we obtain the M models with state equation (10)
and measurement equation

y(n) = Ĥ
(m)T
d (n) sd (n) + v (n) , (12)

where Ĥ
(m)
d (n) is as in Sec. 3.1 with h(m) (n; l) replaced

with estimated ĥ(m) (n; l) from Sec. 3.2. Now our task is
to estimate sd(n) given y(k), k ≤ n, and the M models
specified by (10) and (12). In (12) we treat Ĥ(m)

d (n) as true
H

(m)
d (n).
We propose to use the IMM algorithm [9] to estimate

sd(n). In order to do this, in keeping with [9], we allow tran-
sitions among the M models (this also allows consideration
of time-varying fd) where these transitions are governed by a
first-order homogeneous Markov chain with transition prob-
abilities pij , i, j ∈ {1, 2, · · · , M}, ∑M

j=1 pij = 1. The data
symbols input to the channel s̃(n) are treated as Gaussian ran-
dom variables. The operation of IMM algorithm in one cy-
cle is summarized in Table 1 where σ2

s̃ = σ2
s = E{|s(n)|2}

for information symbol, = 0 for training symbol. Table 1
provides one-cycle (one time sample update) of the IMM al-
gorithm. The required initialization for the algorithm is as
follows: at time k = 0, ŝ(1|0) = E{s(1)} = 0 and its covari-
ance Vŝ(1|0) = σ2

sId+1. Having obtained the IMM estimate
ŝd(n|n) of sd(n), we estimate s(n) with equalization delay d
by quantizing the (d + 1)st component of ŝd(n|n).

4. SIMULATION EXAMPLE

A random time- and frequency-selective Rayleigh fading chan-
nel is considered. We take L = 2 (3 taps) in (1), number of
receive antennas R = 2, and h(r)(n; l) are zero-mean, com-
plex Gaussian with variance σ2

h = 1/ (L + 1). For different
l’s and r’s, h(r)(n; l)’s are mutually independent and satisfy
the Jakes’ model. To this end, we simulated each single tap
following [7] (with a correction in the appendix of [5]).
We consider a communication system with carrier fre-

quency of 2GHz, data rate of 40 kBd (kilo-Bauds), there-
fore Ts = 25μs, and a varying Doppler spread fd in the
range of 0Hz to 200Hz, or the normalized Doppler spread
fdTs from 0 to 0.005 (corresponding to a maximum mobile
velocity from 0 to 108 km /h). The additive noise was zero-
mean complex white Gaussian. The (receiver) SNR refers
to the average energy per symbol over one-sided noise spec-
tral density. The time-multiplexed training scheme of [3] de-
scribed in Sec. 2.3 is adopted, where during data sessions
the information sequences is modulated by BPSK or QPSK
with unit power. The training session is described by (7) with
γ =

√
2L + 1 so that the average symbol power of training

sessions is equal to that of data sessions.
We generated a random doubly-selective channel as dis-

cussed earlier but with two different profiles of varying fd’s
as follows:

1. fd=0 Hz for 1 ≤ n ≤ 420, fd=100 Hz for 421 ≤
n ≤ 840, fd=200 Hz for 841 ≤ n ≤ 1260, fd=100
Hz for 1261 ≤ n ≤ 1680, fd=0 Hz for 1681 ≤ n ≤
2100. We picked K = 2, TB = 175 and P = 5. Each
subblock has 35 symbols with 30 information symbols
in the beginning and 5 training symbols at the end (see
Sec. 2.3). This channel is named as Step Shape time-
varying channel.
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Fig. 1. BER vs SNR with BPSK information symbols.

2. Now fd varies linearly from 0Hz to 200Hz over 1 ≤
n ≤ 1050, and fd varies linearly from 200Hz to 0Hz
over 1051 ≤ n ≤ 2100. This channel is named as
Linear Shape time-varying channel.
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Fig. 2. BER vs SNR with QPSK information symbols.

Two variations on channel estimation schemes are com-
pared using an equalization delay d = 5:

1. QUpperbound: We used a fixedQ for all blocks with
Q=5= upperbound (denoted by “Q upperbound” in the
figs.). With 5 subblocks per non-overlapping block (to-
tal 60 blocks), we estimated the channel for each block
via the approach of Sec. 2.3. Then we used Kalman fil-
tering with d = 5 (no IMM) to detect the information
symbols.

2. ProposedMultipleModel: Here we used overlapping
blocks by shifting blocks by one subblock. We used
three modelsM = 3 with Q1=1, Q2=3 and Q3=5. The
channels are estimated over one block, then we shifted
to the right by one subblock (35 symbols), and esti-
mated the 3 candidate channels again, and so on. For

transition probability matrix we picked⎡
⎣ 0.9 0.1 0

0.05 0.9 0.05
0. 0.1 0.9

⎤
⎦

which reflects the fact that transitions in fd do not jump
over an intermediate value. The three models had equal
initial probabilities of 1/3.

The bit error rate (BER) of each scheme was studied by
averaging over 200 runs where in each run, a symbol se-
quence of length 2100 is generated and fed into a random
doubly-selective channel generated with specified fd’s. The
first 70 symbols were discarded in evaluations. In Figs. 1 and
2, the performances of the two schemes under different SNR’s
are compared for BPSK and QPSK information sequences,
respectively. It is readily seen that overestimating Doppler
spread leads to a performance deterioration compared to the
proposed IMM approach relying on a multiple model formu-
lation.
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