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ABSTRACT

We examine the application of current research in sparse signal re-
covery to the problem of channel estimation. Specifically, using an
Orthogonal Frequency Division Multiplexed (OFDM) transmission
scheme with Pilot Symbol Assisted Modulation (PSAM), we con-
sider the problem of identifying a frequency selective channel from
a limited number Q out of a possible M tones of an OFDM sym-
bol. The main observation is that if M is chosen as prime, one can
identify the channel uniquely if Q ≥ 2T , where T is the number of
nonzero taps in the frequency-selective channel. The identifiability
result requires the minimization of the l0 norm, leading to an in-
tractable combinatorial search problem. Several methods have been
proposed to deal with these issues, and the one we examine involves
l1 norm regularization known as basis pursuit [1]. We apply these
methods specifically to the problem of estimating a frequency selec-
tive channel with PSAM. As a result, the bandwidth efficiency of the
system is increased due to the sparsity of the channel.

Index Terms— Sparse signal recovery, Channel estimation,
OFDM, PSAM

1. INTRODUCTION

In broadband transmission, the data is corrupted by inter-symbol-
interference (ISI). To overcome this, the majority of communica-
tion standards use pilot symbols to estimate the coefficients of the
equivalent discrete-time baseband channel impulse response. Three
common training methods are (i) preamble based training, where
the pilot sequence is included at the beginning of a data burst; (ii)
PSAM, where the training sequence is inserted in the data stream ei-
ther in frequency or time, (iii) and superimposed training, where the
training sequence is added to the data sequence. Few methods for
estimation of the channel with PSAM training make assumptions on
the sparsity of the channel. Several exceptions are, e.g. [2],[3],[4].

A sparse channel can be considered as a channel with a large
delay spread but with relatively few nonzero coefficients. Applica-
tions with sparse channels include high definition television (HDTV)
signals, [5][6], and underwater acoustic channels [7]. The sparsity
of the channel allows identification of the channel from a limited
number of measurements, smaller than the length of the channel.

This material is based upon work supported by the Office of Naval Re-
search (ONR) under Contract No. N00014-05-C-0070. Any opinions, find-
ings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of ONR.

Suppose, for example, we have the model

y = Xh

where y is of length N and the sparse signal h is of length L >> N .
There are known results and restrictions which guarantee the channel
is uniquely identifiable in a noise-free scenario, but most methods to
recover the signal are combinatorial in nature as they consider min-
imization of the l0 norm. Several methods for sparse reconstruction
of h with a more tractable solution include the matching pursuit al-
gorithm (MP) [8], and l1 norm regularization such as basis pursuit
[1]. To the best of our knowledge, the matching pursuit algorithm
does not guarantee unique identifiability of the channel, and the suf-
ficient conditions on X for unique identification of the channel using
l1 norm regularization due not readily allow one to find determinis-
tic matrices satisfying these conditions. It has been shown in [9] that
certain types of random measurement matrices can uniquely recover
the channel with high probability, such as when the elements of X
are drawn independently from a Gaussian distribution.

When estimating a frequency selective channel using PSAM
with the pilot symbols separated from the data symbols in time
(time-division multiplexed training) the matrix X above will be a
Toeplitz matrix. Recently in [10], it was shown that Toeplitz matri-
ces with entries drawn independently from probability distributions
satisfy the conditions in [9], thus allowing unique identification of a
sufficiently sparse channel with high-probability.

Considering PSAM for a single carrier transmission system, to
have data which is not affected by ISI from the information sym-
bols, we need to transmit a number of pilot symbols Q greater than
or equal to the channel length L of the channel. Each additional
equation requires an extra pilot symbol. The main advantage of for-
mulating the problem in the Fourier domain is that, for a number
of tones which is prime, it is possible to give necessary and suffi-
cient conditions on the identifiability of the channel that cannot be
given in the time domain counterpart of the problem. The sufficient
conditions available in [10] would lead to worse spectral efficiency
compared to what is forecasted for the OFDM case. In Section 2
we present the model of our system, and in Sections 3 and 4 we dis-
cuss the application of known uncertainty principles and methods for
estimating the sparse channel.

2. SYSTEM MODEL

Let x[n] be the discrete-time complex baseband equivalent signal
representing the pilot sequence and let us assume that x[n] has fi-
nite duration P . Further, let us model the discrete-time complex
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baseband channel h = (h[0], ..., h[L − 1]) of finite length L as a
deterministic sparse impulse response, i.e.

h[l] =

T∑
t=1

htδ[l − dt] (1)

where, without loss of generalization, 0 ≤ d1 ≤ d2 ≤ ... ≤ dT are
unknown parameters. We refer to the set T = {d1, ..., dT } as the
support of h[l] and indicate its cardinality by |T | or T . The output
of the system due to the pilot signal only is:

y[n] =

L−1∑
l=0

h[l]x[n − l] + w̃[n] (2)

where w̃[n] ∼ CN (0, N0). Assuming there are no guard inter-
vals between the pilot and data sequence, we define the vector y =
(y[L−1], ..., [L+N −1] which contains the received signals which
contain contributions only from the pilot sequence. We may then
express (2) in vector form as:

y = Xh + w̃ (3)

where X is an N × L Toeplitz convolution matrix. In general, if
no sparsity constraint is made on the channel, we require N ≥ L
meaning we need P ≥ 2L − 1 pilot symbols in order to recover
the channel. However, if we assume the channel is sparse, the num-
ber of pilot symbols P can be reduced. This particular problem is
considered in [2], where the authors proposed the use of i.i.d ran-
dom pilot symbols and used l1 norm regularization to estimate the
channel. However, no sufficient conditions were specified for perfect
recovery of the channel.

As stated previously, in [10] the authors investigated the condi-
tions under which a Toeplitz convolution matrix with more columns
than rows allows the exact recovery of a sparse signal in a noise-free
system with high probability. The sufficient conditions proposed in
[10] apply clearly to the problem at hand as we can estimate the
channel coefficients with a limited number of randomly generated
pilot symbols.

Our intention here is to resort to the work of [11] to give strict
identifiability constraints and show how they can result in more ef-
ficient transmission of information through the channel, by instead
decreasing the amount of bandwidth spent on the pilot sequence.

In particular let us assume OFDM transmission, known for its
high spectral efficiency. The use of OFDM allows us to formulate
the problem in the Fourier domain. Let X[k] represent the comb of
pilots in the OFDM symbol,

Xp[k] =

Q∑
q=1

δ[k − pq] (4)

with Ω = {p1, ..., pQ} and pq ∈ {0, 1, ..., M − 1}. The OFDM
modulated pilot sequence x[n] is generated from the M -point DFT:

xp[n] =
1√
P

M−1∑
k=0

Xp[k]e2πjkn/M , 1 − L ≤ n ≤ M − 1

x[n] =
1√
P

Q∑
q=1

e2πjpqn/M + xs[n] (5)

We note that the sequence x[n] incorporates a cyclic prefix of length
L − 1 and the signal xs[n] corresponds to the data tones. Thus the

P = M + L − 1 length pilot sequence given by the vector xp will
consists of Q tones out of a possible M tones. Removing the cyclic
prefix at the receiver, let y = (y[L − 1], ..., y[L + M − 1])T , Thus
after taking the M point DFT of y, we have

z[d] =
1√
M

M−1∑
m=0

y[L − 1 + m]e−
j2πdm

M

z[pq] =

√
M

P
H(e−jwq ) + w[pq] (6)

where ωq = 2πpq/M . We can therefore obtain an estimate of the

partial frequency response of the channel given by Ĥ(e−jwq ) using
for example an zero-forcing or minimum mean squared error estima-

tor. In the following, let Ĥ(e−jΩ) denote the vector corresponding
to the partial frequency response of h at frequencies pq ∈ Ω. In
vector notation we may express this as:

z =

√
M

P
SFh + w (7)

where F is the DFT matrix and S is a Q×L selection matrix select-
ing only the rows of the DFT matrix with frequencies in Ω.

3. UNCERTAINTY PRINCIPLE

We now examine strict identifiability conditions for recovering the
channel. Consider the noise-free system where our estimate of the

partial frequency response is exact, i.e. Ĥ(e−jΩ) = H(e−jΩ). We
want to know if we can recover the sparse impulse response h from
its partial frequency response. The question can be formulated as
follows: What is the minimum number Q of pilot tones necessary
to uniquely identify the sparse impulse response h? This question is
equivalent to finding conditions such that the solution to the follow-
ing combinatorial optimization problem is unique.

min ‖g‖l0 such that H(e−jΩ) = G(e−jΩ) (8)

where ‖g‖l0 is simply the number of non-zero elements of g.

The answer is provided in the following Lemma, first proved by
Chebotarev in 1926 (see [12]). We repeat the lemma from ([11],
Lemma 1.3):

Lemma 3.1 Let M be a prime number, the matrix

{A}q,t = e−
j2πpqdt

M , q = 1, ..., T t = 1, ...T

has nonzero determinant (and is therefore invertible) for any 1 ≤
T ≤ M if p1, ..., pQ are distinct elements of Z/MZ and d1, ..., dT

are also distinct elements of Z/MZ, where Z/MZ denotes the in-
tegers modulo M .

A simple corollary of Lemma 3.1 is for Q ≥ T the matrix A is full
column rank. This lemma leads to the following theorem, stated in
([13], Theorem 1.1):

Theorem 3.2 The sparse channel with |T | = T is uniquely iden-
tifiable from Q out of a possible M pilot tones if M is prime and
Q ≥ 2T

The proof of this theorem is given in the appendix.

The consequence of Theorem 3.2 is that if L > 2T we can re-
duce the number of pilot tones that are strictly required to identify
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the channel. If no sparsity constraint is made on the channel in gen-
eral we require L pilot tones to estimate the channel. However, if we
assume the channel is at most T sparse, the bandwidth efficiency of
the PSAM multi-carrier system is increased:

ρMC =
M − Q

M + L − 1
≤ M − 2T

M + L − 1
(9)

Unfortunately, the combinatorial optimization problem (8) is
complex to solve since one must look at all subsets of h of size T
for the set which gives H(e−jΩ). Furthermore, the presence of noise

in the system resulting in noisy estimate Ĥ(ejΩ) requires relaxing

the strict equality G(ejΩ) = Ĥ(ejΩ). These problem are discussed
in the following sections.

4. CHANNEL ESTIMATION VIA L1 NORM
MINIMIZATION

The pioneering work in [13] presented a tractable solution to the
problem (8) by demonstrating that under a stricter set of conditions,
the l1 norm relaxation of (8) given by the following convex opti-
mization problem,

min ‖g‖l1 such that H(e−jΩ) = G(e−jΩ) (10)

results in unique identification of the signal. Specifically, they
demonstrated that if one selects |Ω| rows from the DFT matrix
uniformly at random, and the vector h has support of size T , such
that

T ≤ Cγ(log M)−1|Ω| (11)

for some constant Cγ > 0, then with probability at least 1 −
O(M−γ) (10) will uniquely recover the signal h. The bound in

(11) results from letting h be a picket fence signal with exactly
√

M
spikes separated every

√
M samples. The recovery of this signal

requires that the intersection Ω ∩ T cannot be empty.
In light of this work, with respect to the problem of recover-

ing a sparse channel with |T | = T from Q out of a possible M pilot
tones, we can still uniquely recover with high probability the channel
impulse response from Q ≤ L pilot tones chosen uniformly at ran-
dom. Though the theory suggests that the set of frequencies Ω must
be chosen at random, one wonders if we can choose a determinis-
tic set of Q pilot tones and still exactly recover h. This question is
addressed through simulation in section 6.

5. SPARSE CHANNEL ESTIMATION WITH NOISE

The convex optimization problem (10) can be modified for noisy
measurements as:

min ‖g‖l1 such that ‖Ĥ(e−jw) − G(e−jw)‖2
l2 ≤ ν (12)

where ν ≥ ‖w‖2
l2 and w is the noise in the system. In [14] the

solution to the problem was shown to be stable in the presence of

noise, i.e. ‖ĥ − h‖2
l2 ≤ Cν for some C > 0. The constraint relies

on the random value ν. If we assume that w ∼ CN (0, σ2
wI), then

we know that it has a χ2 distribution with 2Q degrees of freedom and
thus we can choose α such that α ≥ ‖w‖2

2 with high probability.

6. SIMULATIONS

In the first simulation, for various values of M , we fix the number of
tones to transmit, Q, and vary T as a percentage of Q. For each value
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Fig. 1. Success Rate of (10) in correctly estimating the complex
sparse channel h in a noise-free system with Q out of M = L ran-
domly selected (solid) and fixed (dotted) tones for different percent-
ages T/Q.

of T we run 100 iterations of the noise-free system randomly gener-
ating at each iteration Ω and T . The taps of the channel supported
on T are generated as i.i.d. complex Gaussian circular symmetric
random variables with variance σ2

h = 1. Fig. 1 shows the percent-
age for each support size that the channel is correctly identified. We
also compare the randomly generated pilot tones with a fixed pilot
tone placement scheme where we select T tones, starting with the
first discrete frequency, and increase the gap between tones by one
until we have exceeded M/2. The remaining tones are all placed at
the end of the OFDM symbol. This design is done to intentionally
avoid a symmetric placement of while generating analogous patterns
for different M . In the the case of randomly selected tones, we ob-
serve the performance remains unchanged regardless of whether or
not M is prime. However, for our fixed selection of pilot tones, the
performance is worse than in the case of randomly selected tones.

We now wish to examine whether there exists a fixed place-
ment of pilot tones which performs better than the randomly se-
lected placement of pilot tones. In Fig. 2, we perform a similar
simulation as in Fig. 1, with M = L = 10. In this case, we
examine the percentage of correctly identified channels over 1000
iterations for each value of T . For our fixed selection of pilot tones,
Ω = {1, 2, 5, 7, 10} and Ω = {1, 2, 5, 7, 9, 10} for Q = 5, and
Q = 6 respectively. We see that for our fixed assignment of pilot
ones, the performance is better for T = 1 and T = 2 than the ran-
domly selected tones. Thus, there do exist fixed assignments of pilot
tones which perform better than randomly selected tones.

In Fig. 3, we plot the mean square error (MSE) of the same
fixed pilot tone assignment for Q = 6 as in Fig. 2 for a noisy system
using (12). The noise w ∼ CN (0, NoI) and we define our SNR =
Q/No since each pilot has unit energy at the receiver (5). The T
taps of the channel are again uniformly selected and each tap on the
channel support T is generated as i.i.d. complex Gaussian circular
symmetric with variance σ2

h = 1. We see that the MSE tends to
increase as the support size T is increased. Further, for T = 3,
as observed in Fig. 2, the identifiability of the channel is lost, and
therefore the MSE performance has an error floor as the SNR is
increased.
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Fig. 2. Success Rate of (10) in correctly estimating the complex
sparse channel h in a noise-free system with Q out of M = 10
randomly selected (solid) and fixed (dotted) tones for different T .
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Fig. 3. Mean square error ‖ĥ−h‖2
l2 for M = L = 10, Q = 6, with

a fixed set of pilot tones Ω = {1, 2, 5, 7, 9, 10}.

7. CONCLUSION

We have applied the theory of sparse signal recovery to the problem
of channel estimation. Using a multi-carrier transmission scheme
we have shown that the number of pilot tones needed to estimate a
sufficiently sparse channel can be greatly reduced, thus increasing
the spectral efficiency. In particular,in a noise-free system, we can
perfectly estimate the channel if the number of pilot tones Q ≥ 2T .
In the noisy case, there are alternative methods for estimating the
channel, and the l1 norm regularization problem has been shown to
be stable in the presence of noise. We have shown there are choices
of pilot tone assignment which perform better than the case of ran-
domly selected pilot tones. Further, in our experience, we have ob-
served that with a uniform assignment of pilot tones, identifiability
of the channel tends to be lost when M is not prime.

8. APPENDIX

8.1. Proof of Theorem 3.2

A proof of this theorem is given in [13], and we state a similar proof
here.

Suppose there exists g and h such that G(ejωq ) = H(ejωq ).

Let the support of g be denoted by T̃ and the support of h by T ,

and T̃ = |T̃ |, T = T |. Assuming T̃ ≤ T ≤ 1/2
Q

, and defining

e = g − h with support ε = T̃ ⋃ T , then we must have |ε| ≤ Q.
Let ε = {ξ1, ξ2, ..., ξ|ε|}, then due to Lemma 3.1, the matrix A given
by:

{A}q,t = e−
j2πpqξt

M , t = 1, ..., |ε|
must have full column rank and the linear map A associated with
the matrix A must be injective. Therefore it is impossible for
E(ejwq ) = 0. Thus by contradiction, g = h.
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