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ABSTRACT

Bootstrap-basedmodel selection has been shown in many prac-
tical instances to be superior to classical methods such the
AIC andMDL. This is particularly noticeable when the distri-
bution of modelling noise is unknown and/or when the avail-
able data samples are small. One of the main problems of
using bootstrap model selection with real data is the neces-
sity of tuning the residual scaling parameter or estimating the
length of a sub-sample. Recently, we have developed a new
hook and loop (HL) resampling plane, in which the scaling of
the residuals is avoided. Here, we compare the performance
of the range of resampling planes that can be used in the con-
text of model selection and show that the HL-based model
selection is superior to its predecessors. Moreover, in the con-
text of fitting parametric models to corneal data measured by
videokeratoscopes, the HL provides results that are consistent
with clinical expectations.

Index Terms— model/order selection, resampling planes,
corneal surface modelling

1. INTRODUCTION

Traditional model selection techniques that are widely used in
both linear and non-linear models include the Akaike Infor-
mation Criterion (AIC) [1], Mallows’ Cp criterion [6], and
Rissanen’s Minimum Description Length (MDL) [9]. In re-
cent years, bootstrap-based model order selection techniques
have been advocated as they showed superior performance to
those achieved with classical methods in a range of simulated
applications [12, 13, 14] and real life problems [3, 4, 2].
One of the main problems associated with the use of the

bootstrap in model order selection is the necessity of select-
ing a suitable scaling parameter for the detrended residuals in
the resampling procedure [10]. An alternative to scaling is to
use subsampling [8]. Here again the difficulty remains in the
estimation of subsample length. To avoid this problem, we
have recently proposed the “hook and loop” (HL) resampling
procedure that avoids the scaling [5]. In this work, we assess

the performance of the HL resampling plane in comparison
to non-parametric and parametric bootstrap techniques, the
jackknife [7], the AIC, and the MDL in the context of select-
ing the optimal model.

2. THE RESAMPLING PLANES

For clarity of presentation, let us consider the case of find-
ing the optimal model that can be described as linear in pa-
rameters (the generalisation to a non-linear model is essen-
tially straightforward). Let the considered linear model be
described by

Xt = h
′
tθ + Wt, t = 1, 2, . . . , n,

where θ is the unknown parameter vector of length p while
Wt describes a noise sequence, assumed to be a collection of
i.i.d. random variables of unknown distribution FW (w) with
mean zero and variance σ2

W . Alternatively, we can write our
linear model as

X = hθ + W .

Furthermore, let us denote themodel β as a subset of {1, 2, . . . , p}
that results in the following linear equation

X = hβθβ + W .

The goal of model selection is to choose the optimal model
βo such that θβo

contains all non-zero components of θ only.
A bootstrap-based procedure to achieve this goal has been de-
scribed earlier [12, 14]. Since most of the steps involved in
all resampling-basedmodel selection procedures are common
we will describe them only again in general terms and focus
on the subtle differences that clearly differentiate them from
each other.

1. Given observations x1, x2, . . . , xn, we first calculate
the least-squares estimate θ̂α and derive the residual

ŵt = xt − h
′
αtθ̂α, t = 1, 2, . . . , n,

where α = {1, 2, . . . , p} is the full model and h
′
αt is

the tth row of hα.
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2. Next, we use either the non-parametric bootstrap, the
parametric bootstrap, the jackknife, or the HL to calcu-
late a set of pseudo-new residuals:

NP-BOOT: In the non-parametric bootstrap procedure,
we resample with replacement from√

n/m(ŵt − ŵ·)/
√

1− p/n, (1)

n = 1, 2, . . . , n to obtain ŵ∗
t . Here a scaling pa-

rameterm is introduced such thatm/n→ 0 and

n

m
max
t≤n

h
′
βt(h

′
βhβ)−1

hβt → 0

for all β [10].
P-BOOT: In the parametric bootstrap procedure, we

assume a certain distribution of the residuals and
use a pseudo-random number generator with pa-
rameters estimated from the residuals defined in
Equation (1).

JACK: In the jackknife, we use the detrended residu-
als √

n(ŵt − ŵ·)/
√

1− p/n

and form subsamples ŵ(i), in which the the i-
th sample is omitted. This pseudo-new residu-
als are then additionally ordered according to the
strength of the signal xt as in the HL resampling
plane. Note that we do not include here the scal-
ing parameterm.

HL: In the hook and loop procedure, we sort the de-
trended residuals

ŵ1 − ŵ·, ŵ2 − ŵ·, . . . , ŵn − ŵ·

in an increasing order to obtain a set of residuals
ŵ(1), ŵ(2), . . . , ŵ(n) and generate a new HL sam-
ple using, for example,

ŵ∗
(i) =

1

2

(
w(i) + w(i+1)

)
+ εi

where

εi ∼ N
(

0,

[
1

6

(
w(i+1) − w(i)

)]2
)

.

The HL residuals are then further ordered accord-
ing to the strength of the signal xt [5].

3. In the next step, we compute

x∗
t = h

′
βtθ̂β + v̂∗t , t = 1, 2, . . . , n

where v̂t, t = 1, 2, . . . , n denote either the bootstrap,
the HL, or the weighted bootstrap residuals, and the
least-squares estimate θ̂

∗

β,m from (x∗
t , hβt).

4. Steps 2 and 3 are then repeated B times (or B = n for
the jackknife) to obtain θ̂

∗(i)

β,m and the bootstrap estimate
of the residual squred error

Γ̂∗(i)
n,m(β) =

‖x− hβ θ̂
∗(i)

β,m‖2
n

, i = 1, . . . , B .

5. Finally, we average Γ̂
∗(i)
n,m(β) over i = 1, . . . , B to ob-

tain Γ̄∗
n,m and minimise over β to obtain β̂0.

The differences between the four resampling planes de-
scribed above consist mainly of two aspects:

• Scaling the residuals for the resampling [NP-Boot] or
for estimating the distributional parameters [P-BOOT].

• Ordering (sorting) the residuals according to the strength
of the signal [JACK, HL].

The idea of sorting the pseudo-new residuals has been intro-
duced in the HL resampling plane [5] to associate small am-
plitudes of the residuals with small values of the signal and
large values of the residuals with larger values of the signal.
In this work, we also discovered that such sorting is funda-
mental if a jakknife procedure is to be used for model selec-
tion.

3. SIMULATION RESULTS

The performances of the procedures described in section 2
were tested against the classical methods of model selection,
namely the AIC, and the MDL. For bench-marking purposes,
we considered a simple example of trend estimation from [14],
in which the parameter vector θ = (0, 0, 0.035,−0.0005)′

with n = 64, n = 32, and n = 16. In our earlier works [14, 5]
the number of bootstrap repetitions was set toB = 100. How-
ever, to make the comparative analysis possible with the in-
clusion of the jakknife procedure, we chose in this particular
simulation B = n. In Table 1, we show the results of model
selection for this particular trend estimation problem using
the considered resampling planes as well as those achieved
by the AIC, and the MDL for n = 64, n = 32, and n = 16
in the case the noise model is standard Gaussian and in the
case where it is t3-distributed. The results are based on 1000
independent Monte Carlo runs.
The results clearly indicate that, in the context of model

selection, the HL procedure is superior to all the other consid-
ered resampling planes. The case of the small sample length
(i.e., n = 16) is of particular significance as all the other
methods simply fail to find the correct model order while the
performance of the HL resampling plane is still reasonable.
Further simulation analyses excluding the jackknife routine
showed that the increase in the number of resampling itera-
tions, B, in the non-parametric and parametric bootstrap pro-
cedures does significantly improve their performances.
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Table 1. The percentages of selecting the correct model eval-
uated over 1000 independent Monte Carlo runs for the ex-
ample of trend estimation for the noise sequence modelled as
N (0, 1) (upper part of table) and as t3 (lower part). In the
bootstrap, the scaling parameterm was set to 2.

n NP-BOOT P-BOOT JACK HL AIC MDL
64 98.5 98.2 97.1 99.9 89.4 97.6
32 63.2 61 56.2 94.7 78.3 85.1
16 2.5 3.3 1.0 28.8 1.9 1.1
64 98.2 56.3 93.9 99.2 90.8 97.9
32 31.1 38.9 24.4 83.8 63.4 64.4
16 3.6 6.7 0.8 20.9 1.9 0.7

4. MODELLING OF THE CORNEAL TOPOGRAPHY

The topography of the corneal surface is normally measured
with videokeratoscopes. The 3D point-cloud in cylindrical
coordinates (ρd, θd, Sd), d = 1, 2, . . . , D can be modelled by
a finite series of Zernike polynomials [3]

S(ρ, θ) =
P∑

p=1

apZp(ρ, θ) + ε(ρ, θ) (2)

with Zp(ρ, θ) being the single indexed p-th Zernike polyno-
mial defined as

Zp(ρ, θ)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
2(n + 1)Rm

n (ρ) cos(mθ), even p, m �= 0

√
2(n + 1)Rm

n (ρ) sin(mθ), odd p, m �= 0

√
n + 1R0

n(ρ), m = 0

where n is the radial degree, m is the azimuthal frequency,
and

Rm
n (ρ) =

(n−m)/2∑
s=0

(−1)s(n− s)!

s!
(

n+m
2 − s

)
!
(

n−m
2 − s

)
!
ρn−2s.

In Equation (2), ε(ρ, θ) represents the measurement and mod-
elling error. WhenD discrete samples of the surfaceS(ρd, θd)
are available, the equation above can be easily written in a lin-
ear form as

S = Za + ε

where S is a D-element column vector, Z is a D × P ma-
trix of discrete, orthogonalized Zernike polynomials, a is a
P -element column vector of Zernike coefficients, and ε is a
D-element column vector of measurement and modeling er-
ror. In such modeling, a fundamental problem arises on the
number of Zernike terms to be used.
In essence, corneas from healthy normal eyes should be

well represented with Zernike polynomial expansions up to
the 4th radial order (up to 15 coefficients). For deformed

Table 2. The optimal order of the Zernike polynomial expan-
sion selected by the bootstrap and the HL methods for several
types of corneal surfaces and a range of corneal diameters. (1)
normal healthy cornea, (2) astigmatic health cornea, (3) early
keratoconic cornea, (4) post radial keratotomy cornea.

Cornea Corneal Diameter [mm]
Type 4 6 8

B HL B HL B HL
(1) 6 20 11 14 11 11
(2) 6 12 11 21 11 21
(3) 12 13 12 28 14 21
(4) 14 19 14 21 12 14

corneas, however, such as encountered in keratoconus or for
the corneas that have been surgically altered, a different num-
ber of terms is expected. One may suspect that a deformed
cornea necessarily needs to be modelled by a larger num-
ber of Zernike terms. However, the larger the deformity, the
larger the measurement error is encountered [11]. The num-
ber of Zernike terms fitted to the corneal topography data is
also corneal diameter-depended [3].
One popular, but not rigorous, way of selecting the num-

ber of Zernike terms is to minimise the residual variance and
determine a suitable cut-off threshold value. In the past, how-
ever, this approach led to over-parameterization,where some-
times unrealistically large numbers of Zernike terms (hun-
dreds) were used. Alternatively, a suitable penalty function
could be used that increases with the number of parameters to
form a model order selection criterion. In videokeratoscopy,
where the measurement errors are several orders smaller than
the effective signals (i.e. fewmicrons vs. fewmillimetres) [11],
the use of classical model selection criteria such as the AIC
and the MDL results in an unrealistic situation where hun-
dreds or even thousands of Zernike polynomial terms need to
be fitted.
This problem has been resolved in [3] with a bootstrap

based model order selection procedure, although it was later
found that it sometimes underestimates the clinically expected
model order. This bootstrap procedure has been recently im-
proved by incorporating the knowledge of the spatially non-
uniformity of the measurement noise in the resampling pro-
cedure [4]. This was achieved by performing resampling in
semi-rings of data, where the noise distribution can be as-
sumed constant. However, this procedure is numerically very
complex and hence, has a very limited practical applicability.
In Table 2, we show the results of estimating the optimal

order of the Zernike polynomial expansion fitted to the range
of corneal topography data. Four topographically different
corneas were chosen: (1) a normal healthy cornea of an em-
metrope, (2) a normal healthy cornea with astigmatism (ap-
proximately −2.0 Diopters), (3) the cornea of a subject with

3463



early keratoconus, and (4) the cornea of a subject that have
undergone a refractive surgery (radial keratotomy). Videok-
eratocopic discrete data consisting of 256 semi-meridians and
26 rings resulting in D = 6656 were used.

5. CONCLUSIONS

We have performed a comparative analysis of four resam-
pling planes in the context of model selection. We showed
that a model selection technique based on the recently pro-
posed hook and loop resampling scheme clearly outperforms
the traditional model selection techniques such as the AIC
and the MDL as well as the other computer intensive methods
based on the parametric and non-parametric bootstrap and the
jackknife. The superior performance of the HL-based method
was evident in both cases where the noise is Gaussian or non-
Gaussian distributed. It is remarkable that the HL procedure
is able to provide a reasonable result for samples as little as
16 data points and only 16 repetitions.
The HL-based selection of the optimal order of Zernike

polynomial expansion to corneal topography data measured
with videokeratoscopes has been compared to the traditional
bootstrap technique [3]. Unlike the traditional method, which
showed deficiencies in terms of underestimating the Zernike
model order, the HL-based routine provides results that are
consistent with clinical expectations. At the same time, the
HL routine is computationally less complex than the block-
based resampling technique reported in [4].
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