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ABSTRACT

In practice, the transition probability matrix (TPM) in the approach
to track a maneuvering target is often unknown. We propose a new
method to estimate the optimal TPM according to the maximum a
posteriori (MAP) or maximum likelihood (ML) criterion via convex
optimization. We apply the proposed method to the nonlinear/non-
Gaussian cases, where the interacting multiple model (IMM) particle
lter (IMMPF) is employed to estimate the corresponding base state.

Simulation results of tracking a maneuvering target show the ef cacy
of the proposed method with improved performance.

Index Terms— MAP/ML Estimation, IMMPF, Hybrid systems,
Convex optimization, Adaptive estimation

1. INTRODUCTION

Hybrid systems are de ned as the combination of continuous and
discrete dynamic systems, where a bank of state space models are
used to describe a nonstationary environment with multiple modes
that are switched from one to another according to Markov chain.
A popular approach to track a maneuvering target is to model it as
a hybrid system with known transition probability matrix (TPM).
However, the TPM is often unknown in practice, and to estimate the
TPM with high accuracy is dif cult. Moreover, the inadequate TPM
will result in signi cant loss of performance. Thus, the accurate
estimation of the TPM is necessary for the hybrid systems.

In order to estimate TPM, a variety of criteria such as mini-
mum mean square error (MMSE), maximum a posteriori (MAP),
and maximum likelihood (ML), can be employed. In [1], Doucet
and Ristic assumed that the rows of the TPM obey Dirichlet distri-
bution and derived a result with simple form. In [2], Jilkov and Li
gave an approximate a posteriori density of the TPM, and the TPM
is estimated recursively using the MMSE criterion.

In this paper, we propose a new method to estimate the TPM
under the MAP or ML criterion via convex optimization, where the
TPM is assumed to be random or non-random, and time-invariant.
For lack of a priori information or non-random cases, the MAP es-
timation is extended to the ML estimation. We apply the method
to the nonlinear/non-Gaussian cases where the IMM particle lter
(IMMPF) [3] is employed. To our best knowledge, the results of
the TPM estimation in the nonlinear/non-Gaussian cases are not re-
ported in the open literature.
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2. SYSTEM MODEL

Consider a multiple model stochastic system

x(k) = f [k, x(k − 1), v(k − 1), M(k)] (1)

z(k) = h[k, x(k), w(k), M(k)] (2)
where x(k) is the base state, and v(k−1) and w(k) is noise, respec-
tively. M(k) is the modal state of a Markov chain with r states in
the interval (tk−1, tk] with the transition probabilities de ned as

Pij � P{M(k) = j |M(k − 1) = i}, i, j = 1, . . . , r. (3)

The task here is to estimate the augmented hybrid states,

y(k) = {x(k), M(k)} (4)

based on the joint pdf de ned by

p[y(k) |Zk] = p[x(k),M(k) = i |Zk], (5)

where Zk � {z(l), l = 0, . . . , k}. The mode probability at time k
is de ned by

μk,i � P{M(k) = i |Zk}. (6)

As shown in [4] that the MMSE-optimal estimation the base
state x obtained by the Baysian full-hypothesis-tree (FHT) is infeasi-
ble due to its exponentially growing computation and memory. This
means that the suboptimal approximations with limited complexity
are needed. The suboptimal approximations are referred to as mul-
tiple model (MM) algorithms, where the interacting multiple model
(IMM) algorithm [4] is attractive. In this paper, the IMM particle
lter (IMMPF) [3] is employed.

3. BAYESIAN ESTIMATION OF TRANSITION
PROBABILITIES

3.1. The TPM Likelihood [2]

Let P = [Pij ] be the TPM to be estimated in hybrid systems. Under
the framework of IMM and according to the total probability theo-
rem, the likelihood of the TPM at k + 1 can be denoted by [2]

p[z(k + 1)|P, Zk]

=

rX
j=1

˘
p[z(k + 1)|M(k + 1) = j,P, Zk]

×
rX

i=1

P{M(k + 1) = j|M(k) = i, P, Zk}

× P{M(k) = i|P, Zk}¯. (7)
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Denoting the estimate of P at k as P̄(k), it is reasonable to replace
P with P̄(k) in (7), the likelihood of P can be approximated by

p[z(k + 1)|P, Zk] ≈
rX

j=1

Λ̃k+1,j

rX
i=1

Pij μ̃k,i (8)

where

Λ̃k+1,j � p[z(k + 1)|M(k + 1) = j, P̄(k), Zk] (9)

μ̃k,i � P{M(k) = i|P̄(k − 1), Zk}. (10)

De ne

μ̃k � [μ̃k,1, μ̃k,2, . . . , μ̃k,r]
T

Λ̃k+1 � [Λ̃k+1,1, Λ̃k+1,2, . . . , Λ̃k+1,r]
T ,

which are approximated using IMMPF particles, so that (8) can be
written as

p[z(k + 1)|P, Zk] ≈ μ̃T
k PΛ̃k+1. (11)

If P is random, then using Bayes’ rule the posterior density of P can
be approximated by

p[P|Zk+1] =
p[z(k + 1)|P, Zk]

p[z(k + 1)|Zk]
p[P|Zk]

≈ μ̃T
k PΛ̃k+1

μ̃T
k P̄(k)Λ̃k+1

p[P|Zk ] (12)

where

p[z(k + 1)|Zk] =

Z
p[z(k + 1)|P, Zk]p[P|Zk ]dP

≈
Z

μ̃T
k PΛ̃k+1p[P|Zk]dP = μ̃T

k P̄(k)Λ̃k+1. (13)

Here, P̄(k) is actually the MMSE estimate of P at k [2]. For a given
K, we have

p[P|ZK ] ≈ c
KY

k=1

[μ̃T
k−1PΛ̃k]p[P] (14)

where p[P] = p[P|Z0] and c is a constant. If P is non-random or
random with unknown initial density, (14) can be extended as the
likelihood function up to K

p[ZK |P] ≈
KY

k=1

[μ̃T
k−1PΛ̃k]. (15)

We note here that the approximation we made in (11) is the local
linearization of the likelihood function of P.

3.2. MAP/ML Estimation of the TPM via Convex Optimization

The MAP estimation of P can be cast into the following optimiza-
tion problem,

maximize p[P|Zk+1]

subject to
rX

j=1

Pij = 1, i = 1, . . . , r

Pij � 0, i = 1, . . . , r, j = 1, . . . , r (16)

where P = [Pij ]. Substituting (14) into (16), (16) is equivalent to

minimize − ln p[P|Zk+1]

= − ln c−
k+1X
n=1

ln[μ̃T
n−1PΛ̃n]− ln p[P]

subject to
rX

j=1

Pij = 1, i = 1, . . . , r

Pij � 0, i = 1, . . . , r, j = 1, . . . , r (17)

We see that (17) is a convex optimization problem [6] if p[P]
is log-concave, which can be solved by the nonlinear programming
solver solnp.m downloaded from http://www.stanford.edu/ yyye /mat-
lab.html by Y. Ye at each step. We note that by substituting (15) into
(16), the ML estimation of P can be thus formulated.

3.3. Suboptimal Approach

For updating the likelihood, we replace the MMSE estimate P̄(k) in
(9) and (10) with the corresponding MAP estimate, such that

P̄(k) =

Z
Pp[P|Zk ]dP ≈ aug max

P
p[P|Zk ] (18)

since they both converge to the true TPM.
However, the above approximation may introduce errors to the

posterior pdf (12) at the start of few time steps especially when the a
priori knowledge is lacking. This comes from the fact that the tran-
sition probabilities are estimated asymptotically from the empirical
average of the previous transitions. At the start of few time steps, the
mode is possibly unchanged and transition information is lacking,
which means that there will be no enough information to estimate
all the elements of the TPM. For example, assuming the dominant
mode is i and kept unchanged, the optimal estimate of the TPM can
be obtained by solving (17), whose elements of i-th column will be
1, and the rest will be 0. It is obvious that the results of the estimation
are unreasonable.

The unreasonable results are due to the fact that the coef cients
are only determined by Λ̃n, and the mode probabilities μ̃n−1 will
not take effect, which results in the wrong estimation of the TPM,
and so are μ̃n−1 and Λ̃n, and the errors introduced into (12).

In order to reduce the effect of the errors, the following subopti-
mal approach is required to solve (17), which is referred to as greedy
strategy. The greedy strategy is what tries to make the best possible
local decision to approach the global optimum.

Let PT
i be the i-th row of P and P = [P1,P2, . . . , Pr]

T . As-
suming

Z
Plp[P1,P2, . . . ,Pr|Zk]dP1 . . . Pi−1dPi+1 . . . dPr

= P̄l(k)p[Pi|Zk] (19)

for l, i = 1, 2, . . . , r, l �= i, p[Pi|Zk+1] can be written as (for proof,
see Appendix A in [2])

p[Pi|Zk+1] = {1+ηi(k+1)[Pi−P̄i(k)]T Λ̃k+1}p[Pi|Zk] (20)

where

ηi(k + 1) =
μ̃k,i

μ̃T
k P̄(k)Λ̃k+1

. (21)
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According to (20), (17) can be simpli ed and equivalently written as
the following r convex optimization problems

minimize − ln p[Pi|Zk+1]

= −
kX

n=0

ln{1 + ηi(n + 1)[Pi − P̄i(n)]T Λ̃n+1}

− ln p[Pi]

subject to
rX

j=1

Pij = 1

Pij ≥ 0, j = 1, . . . , r (22)

where i = 1, . . . , r, P̄T
i (n) represents the i-th row of the estimate

of P at time n.
Similarly, we here replace the MMSE estimate P̄(k) in (22) with

the corresponding MAP estimate.
To approach the global solution,the following greedy strategy

might be used, where the local optimal estimation of P is performed
using (22) with the observation data of the length of K.

Greedy Strategy:

� Step 1: Given the a priori pdf (if available) and the a priori
mode probabilities, and set k = 1.
� Step 2: Based on the observed (received) data, calculate
the mode likelihoods and the mode probabilities using (9) and
(10).
� Step 3: Find the most likely mode at the previous time step,
update the corresponding pdf using (20) and solve the opti-
mization problem of (22).
� Step 4: Let k = k + 1, then go to step 2 until k > K.

Remarks: In maneuvering target tracking, to obtain good base state
estimation, the TPM is often diagonally dominant, which means that
the mode change will not often happen. The probability of the dom-
inant mode is close to 1 when the mode is unchanged, which often
happens when the IMM estimator is used. In such cases, the perfor-
mance difference of the TPM estimation by (17) and (22) are little,
and computation cost of using the latter, however, is much less than
that using the former. It should be noted that the greedy strategy is
needed in any cases at the start of few time steps.

4. SIMULATION RESULTS

In the simulation, the scenario of tracking a maneuvering target is
considered, where the target is assumed to obey one of the 3 dy-
namic models: (1) constant velocity (CV) model, (2) clock-wise co-
ordinated turn (CT) model, (3) anticlockwise CT model. The target
state and ownship state are, respectively, denoted as

x(k) = [x(k), y(k), ẋ(k), ẏ(k)]T

xo(k) = [xo(k), yo(k), ẋo(k), ẏo(k)]T

where (x(k), y(k)) and (ẋ(k), ẏ(k)) is the target position and veloc-
ity, respectively, which are similarly de ned in ownship state. The
models are denoted as:

x(k + 1) =F(M(k+1))(x(k))(x(k) + xo(k))

− xo(k + 1) + Γ(k)v(k) (23)

z(k) = [x(k), y(k)]T + w(k) (24)

where Γ(k) = [T2

2
, T ]T ⊗ I2 and F(M(k+1)) is the transition ma-

trix to the mode M(k +1) and T is the sampling interval. Here⊗ is
the Kronecker product and I2 is the identity matrix. The transition
matrices corresponding to the three modes are, respectively, given by

F(1)(x(k)) =

»
1 T
0 1

–
⊗ I2

for CV model; and

F(j)(x(k)) =

2
6666664

1 0
sin(Ω

(j)
k

T )

Ω
(j)
k

−(1−cos(Ω
(j)
k

T ))

Ω
(j)
k

0 1
(1−cos(Ω

(j)
k

T ))

Ω
(j)
k

sin(Ω
(j)
k

T )

Ω
(j)
k

0 0 cos(Ω
(j)
k T ) − sin(Ω

(j)
k T )

0 0 sin(Ω
(j)
k T ) cos(Ω

(j)
k T )

3
7777775

j = 2, 3

for clockwise CT model and anticlockwise CT model, where the
mode-conditioned turning rates are

Ω
(2)
k = −Ω

(3)
k =

amp
(ẋ(k) + ẋo(k))2 + (ẏ(k) + ẏo(k))2

Here am > 0 denotes maneuver acceleration. Note that the turning
rate is expressed as a function of target velocity, and thus mode 2
and 3 are clearly nonlinear transitions. Assuming v(k) ∼ N (0,Q),
where Q = σ2

aI2. w ∼ N (0,R), where R = diag
˘
σ2

x, σ2
y

¯
.

In the simulation, we assume that the ownship is stationary and
located at (0, 0), and the target is always observable.

We set the parameters T = 2min, σa = 1km/h, σx = 0.2km,
σy = 0.2km, am = 2000km/h2. The number of particles is se-
lected as N = 1800. The a priori mode probabilities are assumed
as μ0,1 = 0.8, μ0,2 = μ0,3 = 0.1. The valid range of P is assumed
as Pii ∈ [0.6, 0.99] for i = 1, 2, 3, and Pij ∈ [0.01, 0.3] for i �= j.
We assume that the TPM is non-random, and the exact P is given by

P =

2
4 0.9 0.05 0.05

0.1 0.8 0.1
0.1 0.1 0.8

3
5 . (25)

The non-adaptive TPM is assumed as 1
3
[1, 1,1]T , where all the

entries of 1 is 1. Under the assumption of non-random TPM, the
TPM is initialized by 1

3
[1,1, 1]T and it is adaptively estimated using

the ML criterion. For convenience, that the TPM be adaptively es-
timated, non-adaptively given, and known exactly are referred to as
adaptive, non-adaptive, and exact TPM, respectively. The true initial
target state is assumed as x(0) = [10km, 10km, 80km/h, 80km/h],
and the initial particles are drawn from N (x(0),S), where S =
10I4. 200 Monte Carlo runs are performed to simulate the base state
estimate error and the convergence of the TPM estimate. In each
run, a true mode sequence is generated according to the true TPM.
Because there’s no observation at k = 0, we don’t solve (22) at
k = 1.

The base state is estimated using the IMMPF under the TPM
estimate at previous time step, such that x̂(k + 1) = E[x(k +
1)|P̄(k), Zk+1]. Fig. 1 shows the curves of the mean absolute error
(MAE) of the base state estimate versus time, from which we can
see that the MAE under adaptive TPM is less than that under non-
adaptive TPM, and approaches that under exact TPM. In Fig. 2, the
curves of the convergence of the TPM estimate versus time are plot-
ted. It is seen that the TPM estimate converges in less than 100 time
steps.

In order to avoid particle impoverishment which may cause the
error that is increased as time, we use the technique similar to the
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(c) MAE at x-velocity
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(d) MAE at y-velocity

Fig. 1. The MAE of the base state estimate.
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Fig. 2. The convergence of the components of P: dashed lines are
true values, solid thick lines are estimates.

regularized particle lter (RPF) when the step of interaction resam-
pling is carried on in IMMPF [3], and the Gaussian kernel [5] is used
to construct a continuous pdf in the simulation.

5. CONCLUDING REMARKS

In this paper we have proposed a new method to estimate the TPM in
hybrid systems via convex optimization according to the MAP/ML
criterion, where the IMMPF is employed to deal with nonlinear/non-
Gaussian problems. Simulation results show the ef ciency of the
proposed method, and the good performance through a maneuvering
target tracking example.
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