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ABSTRACT
We present in this article a novel particle-filter-based blind
equalization algorithm suitable for FIR time-varying frequen-
cy-selective communication channels corrupted by unknown
variance additive Gaussian noise. The proposed method is
fully Bayesian, integrating out the unknown parameters via
an original recursive method, unlike previous approaches that
rely on suboptimal plug-in estimates. We verify via numer-
ical simulations that the proposed method’s performance ap-
proaches that of the trained MAP equalizer, exceeding that of
the linear least squares Kalman equalizer for medium to low
noise levels.

Index Terms— Adaptive equalizers, Sequential estima-
tion, Monte Carlo methods, Bayes procedures.

1. INTRODUCTION

The use of particle filters in the solution of blind equaliza-
tion [1] and related digital communication problems [2] has
drawn significant research interest lately. Most of the methods
found in the literature rely however on the exact knowledge
of the noise variance parameter, or resort to suboptimal es-
timates of this quantity [3], which may lead to performance
issues. In [4], we introduced an algorithm that filled this gap,
treating the unknown variance as a nuisance parameter that
was analytically integrated out. The algorithm in [4] assumes
however that the channel parameters are time-invariant, and
cannot be trivially modified to deal with different models.

In this article, we lift this restriction, introducing a novel
fully-Bayesian blind equalization algorithm suitable for fre-
quency-selective time-varying FIR channels. The unknown
filter coefficients are assumed to evolve in time according to
an AR model. The proposed scheme relies on an original
method for propagating the posterior statistics of the noise
variance inspired in [5], and on the adoption of conjugate pri-
ors [6] for the unknown parameters. As we verify via numer-
ical simulations, the performance of the proposed algorithm
is not critically dependent on the validity of the prior assump-
tions, achieving near-optimal performance in simulations em-
ploying mismatched models.
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The remainder of this article is organized as follows: after
describing the underlying signal model in Sec. 2, we present
the proposed particle filter equalizer in Sec. 3. The perfor-
mance of the proposed algorithm is assessed via numerical
simulations in Sec. 4, and finally, in Sec. 5, we summarize the
main contributions of our work.

2. SIGNAL MODEL

Denote by bn, {n ≥ 0} the transmitted binary bits, assumed to
form an independent, identically distributed (i.i.d) sequence,
and let sn ∈ {±1} be the resulting differentially encoded
symbols. The observations y0:n � {y0, ..., yn} are assumed
to be the output of the additive noise frequency selective FIR
channel

yn = h
H
n Sn + vn, (1)

where hn ∈ C
L×1 is a vector that collects the channel im-

pulse response terms, L denotes the (known) channel order,
Sn � [sn . . . sn−L+1]

T ∈ R
L×1, and vn represents the con-

tribution of the additive noise. The unknown channel impulse
response vector hn is assumed to evolve in time according to
a first-order autoregressive model

hn+1 = Ahn + wn, (2)

where A ∈ C
L×L is assumed known and {wn}, n ≥ 0, is

a complex multivariate process. Given the above model, our
objective is to compute recursively the MAP smoothed esti-
mate (d ≥ 0)

b̂n−d = arg max
bn−d

p(bn−d|y0:n). (3)

where p(bn−d|y0:n) denotes the probability mass function (p.m.f)
of the symbol bn−d conditioned on the observations y0:n.

2.1. Prior Model

In this work, we assume a set of conjugate prior distributions
for vn and wn similar to that employed in [7] in a different
context. Namely, we assume that both variables are zero-
mean complex circular Gaussian, with moments

E

[
vn

wn

] [
v∗m w

H
m

]
=

[
σ2

0

0 Iσ2ε2

]
δ[m− n], (4)
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where δ[·] denotes the Kronecker delta function. The un-
known variance parameter σ2 is assumed to be distributed a
priori according to

p(σ2) = IG(σ2|α, β)

�
βα

Γ(α)
(σ2)−(α+1) exp

(
−

β

σ2

)
U(σ2). (5)

where IG stands for an inverse-gamma probability density
function (p.d.f), U(·) denotes the unit step function, and {α, β,
ε} ∈ R

+ are the model hyperparameters.

3. PROPOSED ALGORITHM

3.1. Particle Filters

The proposed method is based on particle filters (PFs) [8],
now a well-established numerical technique for solving stochas-
tic filtering problems. Basically, PFs operate by approximat-
ing the posterior distribution of the inferred variables by a
weighted sum of Dirac measures located on the so-called par-
ticles, which are in turn random draws from an arbitrarily
chosen distribution known as the importance function. The
application of this principle to solve the smoothing problem
in (3) leads to the approximation [4]

p(bn−d|y0:n) ≈

∑P

p=1 w
(p)
n δ[b

(p)
n−d − bn−d]∑P

q=1 w
(q)
n

, (6)

where b
(p)
n−d are elements of the sequences b

(p)
−L:n (particles),

P denotes the number of particles and w
(p)
n their respective

weights. Adopting the so-called optimal importance func-
tion [8], i.e, sampling the particles as

b(p)
n ∼ p(bn|b

(p)
−L:n−1, y0:n), (7)

results in the weights being updated according to

w(p)
n ∝ w

(p)
n−1p(yn|b

(p)
−L:n−1, y0:n−1). (8)

Both the p.m.f in (7) and the p.d.f in (8) can be obtained from
p(bn, yn|b

(p)
−L:n−1, y0:n−1), whose expression we derive in the

next section. To verify this fact, observe that

p(bn|b
(p)
−L:n−1, y0:n) =

p(bn, yn|b
(p)
−L:n−1, y0:n−1)∑

∀bn
p(bn, yn|b

(p)
−L:n−1, y0:n−1)

,

(9)
and that the denominator of (9) equals the weight update fac-
tor in (8). For convenience, we drop in the sequel the super-
script index (p).

3.2. Determination of p(bn, yn|b−L:n−1, y0:n−1)

Initially, observe that as a consequence of Bayes’ law, we can
write

p(bn, yn|b−L:n−1, y0:n−1) = p(yn|b−L:n, y0:n−1)
p(bn|b−L:n−1, y0:n−1).

(10)

Since bn is i.i.d, the second factor on the right-hand side (r.h.s)
of (10) equals p(bn). To determine the first factor, note that
the deterministic relation between b−L:n and S0:n implies
that [4]

p(yn|b−L:n, y0:n−1) = p(yn|S0:n, y0:n−1), (11)

where S0:n denotes the (unique) state sequence corresponding
to the bits b−L:n. To evaluate the term on the r.h.s of (11), first
observe that

p(yn|S0:n, y0:n−1) =∫
R+

∫
CL p(yn,hn, σ2|S0:n, y0:n−1)dhndσ2.

(12)

Again, as a result of Bayes’ law, we obtain that

p(yn,hn, σ2|S0:n, y0:n−1) = p(yn|hn, σ2,S0:n, y0:n−1)
p(hn|σ

2,S0:n, y0:n−1)p(σ2|S0:n, y0:n−1).
(13)

Exploiting conditional independences induced by (1)-(2), one
can verify that, see Appendix A,

p(hn|σ
2,S0:n, y0:n−1) = p(hn|σ

2,S0:n−1, y0:n−1), (14)

p(σ2|S0:n, y0:n−1) = p(σ2|S0:n−1, y0:n−1). (15)

From the model assumptions, it also follows that

p(yn|hn, σ2,S0:n, y0:n−1) = N (yn|h
H
n Sn, σ2), (16)

and that hn is conditional Gaussian, i.e.,

p(hn|σ
2,S0:n−1, y0:n−1) = N (hn|ĥn|n−1, σ

2Σn|n−1),
(17)

where N denotes a complex Gaussian density, and ĥn|n−1

and Σn|n−1 can be recursively via the following set of equa-
tions

ĥn|n−1 = Aĥn−1,
Σn|n−1 = AΣn−1A

H + Iε2,
γn = 1 + S

H
n Σn|n−1Sn,

ĥn = ĥn|n−1 + γ−1
n Σn|n−1Sn(yn − ĥ

H
n|n−1Sn)∗,

Σn = Σn|n−1 − γ−1
n Σn|n−1SnS

H
n Σn|n−1.

(18)

The expressions in (18) can be obtained by designing a Kalman
filter to estimate hn according to the model (1)-(2), supposing
that S0:n is known. Notice, however, that the actual condi-
tional predictive and filtering covariances in the Kalman filter
are σ2Σn|n−1 and σ2Σn, respectively. As it will become clear
in the sequel, the ability to factor out σ2 from (18) is funda-
mental to allow this quantity to be analytically integrated out.
To continue the derivation, we employ the following result
proven in Appendix B.

Claim 1 For the adopted signal model, one can show that

p(σ2|S0:n−1, y0:n−1) = IG(σ2|αn−1, βn−1), (19)

where

αn = αn−1 + 1,

βn = βn−1 + γ−1
n ‖yn − ĥ

H
n|n−1Sn‖

2,
(20)

with α−1 = α and β−1 = β.
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Substituting (16)-(19) into (13) leads to

p(yn,hn, σ2|S0:n, y0:n−1) = N (yn|h
H
n Sn, σ2)

N (hn|ĥn|n−1, σ
2Σn|n−1)IG(σ2|αn−1, βn−1).

(21)

After a long algebraic manipulation, one can verify that

N (yn|hH
n Sn, σ2)N (hn|ĥn|n−1, σ

2Σn|n−1) =

N (yn|ĥ
H
n|n−1Sn, σ2γn)N (hn|ĥn, σ2Σn).

(22)

The r.h.s of (22) is a Gaussian density in hn. Substituting
it in (21) and noticing that the remaining parameters are not
functions of hn, this variable can be integrated out, resulting
that

p(yn, σ2|S0:n, y0:n−1) =

= N (yn|ĥ
H
n|n−1Sn, σ2γn)IG(σ2|αn−1, βn−1)

=
[
β

αn−1

n−1 (σ2)−(αn−1+2)
]
/ [Γ(αn−1)πγn]

× exp
{
−σ−2

[
γ−1

n ‖ĥH
n|n−1Sn − yn‖

2 + βn−1

]}
=

[
β

αn−1

n−1 Γ(αn)
]
/ [βαn

n Γ(αn−1)πγn] IG(σ2|αn, βn).
(23)

As none of the parameters of (23) are dependent on σ2, inte-
grating out this variable is equivalent to discarding the inverse-
gamma distribution, from which we finally get that

p(yn|S0:n, y0:n−1) =
Γ(αn)

Γ(αn−1)
·

1

πγn

·
β

αn−1

n−1

βαn

n

, (24)

which via (11) allows one to evaluate (7) and (8). The pa-
rameters αn and βn can be obtained via (20), which in turn is
dependent on the outcomes of the Kalman filter (18).

4. RESULTS

In order to assess the performance of the proposed equaliza-
tion scheme, we carried out numerical simulations evaluating
the BER (bit error rate) as a function of the signal-to-noise
ratio Eb/N0. Simulations consisted of 400 independent real-
izations, in each of which a block of 300 i.i.d binary symbols
was transmitted. BER estimation was made after discarding
the first 100 symbols to allow for algorithm convergence. For
all algorithms, the 1% extreme results were discarded. The
filter employs P = 300 particles and smoothing lag of d = 2
samples. A resampling step was carried out at every iteration
using the residual algorithm [9].

In the following simulations, we assumed that A = 0.99I,
ε2 = 10−2, α = 1, β = 0.1, and L = 3. Since the assumed
prior model does not lead to constant Eb/N0, the channel co-
efficients were obtained according to the mismatched model

hn+1 =
Ahn + wn

‖Ahn + wn‖
, (25)

where wn ∼ N (0; Iσ2ε2). The value of σ2 was determined
so as to lead to the desired signal-to-noise ratio according to
the relation

Eb/N0 = ‖hn‖
2/σ2 = 1/σ2. (26)

In Figure 1, we display the results obtained for the proposed
algorithm (solid line). For comparison, the same figure de-
picts the performance of the MAP equalizer (BCJR) (©) and
that of the linear equalizer based on the Kalman filter (	).
The Kalman filter was designed to estimate Sn; smoothed es-
timates with a lag of d = 2 samples were obtained via the
relation ŝn−d = [Ŝn]d+1, where [·]l denotes the l−th element
of the vector in brackets. Both alternative algorithms operate
on blocks of 300 samples with exact knowledge of channel
and noise variance parameters, being therefore not subject to
model mismatches. For the alternative algorithms, differential
decoding was performed separately from equalization.

As one might verify, the proposed blind algorithm outper-
forms the linear least squares (Kalman) approach for Eb/N0

levels greater than 6dB, exhibiting a performance penalty of
2− 3dB in comparison to the optimal MAP estimate.
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Fig. 1. Performance of the proposed blind equalization algo-
rithm (PF) as a function of Eb/N0 compared to the optimal
(BCJR) and to the Kalman equalizer (Linear).

5. CONCLUSIONS

We presented in this article a new blind equalization algo-
rithm for time-varying frequency-selective channels corrupted
by unknown variance additive Gaussian noise. Our main con-
tribution was to introduce a new method for integrating out
the unknown noise variance σ2, which relies on the choice of
a dynamic conjugate prior model and on a new scheme for
recursively determining the noise posterior distribution. As
we verified via numerical simulations, the proposed method
exhibits a performance gap of only 2− 3dB in comparison to
the MAP equalizer based on the BCJR algorithm, and outper-
forms a Kalman filter based equalizer for Eb/N0 > 6dB. As
a final remark, note that the proposed method requires that an
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independent Kalman filter be run for each particle, resulting
in a computational complexity of O(PL2), roughly equiva-
lent to that of the pioneering algorithm in [1], which assumed
a time-invariant channel with known noise variance.
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A. PROOF OF EQUATIONS (14)-(15)

To verify (14)-(15), note that as a consequence of the defini-
tion of conditional p.d.f, it follows that

p(hn|σ
2,S0:n, y0:n−1)

p(hn|σ2,S0:n−1, y0:n−1)
=

p(Sn|hn, σ2,S0:n−1, y0:n−1)

p(Sn|σ2,S0:n−1, y0:n−1)
,

(27)
p(σ2|S0:n, y0:n−1)

p(σ2|S0:n−1, y0:n−1)
=

p(Sn|σ
2,S0:n−1, y0:n−1)

p(Sn|S0:n−1, y0:n−1)
. (28)

As {Sn} is Markovian, the densities on the numerators and
denominators of the right-hand sides of (27) and (28) equal
p(Sn|S0:n−1). This implies that the ratios on the left-hand
sides of (27) and (28) equal 1, leading to the results stated in
(14)-(15).

B. PROOF OF EQUATIONS (19)-(20)

Initially, observe that

p(σ2|S0:n, y0:n) =
p(Sn, yn, σ2|S0:n−1, y0:n−1)∫

R+ p(Sn, yn, σ2|S0:n−1, y0:n−1)dσ2
.

(29)
The density on the r.h.s of (29) factors as

p(Sn, yn, σ2|S0:n−1, y0:n−1) = p(σ2|S0:n−1, y0:n−1)

×p(Sn|S0:n−1, y0:n−1, σ
2)p(yn|S0:n, y0:n−1, σ

2), (30)

Taking into consideration conditional independences induced
by (1)-(2), we can rewrite (30) as

p(Sn, yn, σ2|S0:n−1, y0:n−1) = p(σ2|S0:n−1, y0:n−1)

×p(Sn|S0:n−1)p(yn|S0:n, y0:n−1, σ
2), (31)

The second factor on the r.h.s of (31) is a discrete distribution
that assumes an equal value for all valid Sn. To determine the
third term, observe that

p(yn|S0:n−1, y0:n−1, σ
2) =

∫
CL

p(yn,hn|S0:n, y0:n−1, σ
2)dhn.

(32)
Similarly to Sec. 3.2, one can verify that

p(yn,hn|S0:n, y0:n−1, σ
2) =

= p(yn|hn,Sn, σ2)p(hn|S0:n−1, y0:n−1, σ
2)

= N (yn|h
H
n Sn, σ2)N (hn|ĥn|n−1, σ

2Σn|n−1)

= N (yn|ĥ
H
n|n−1Sn, σ2γn)N (hn|ĥn, σ2Σn)

(33)

which implies that

p(yn|S0:n−1, y0:n−1, σ
2) = N (yn|ĥ

H
n|n−1Sn, σ2γn). (34)

Assume now, as an induction hypothesis, that (19)-(20) are
valid for n− 1, i.e.,

p(σ2|S0:n−1, y0:n−1) = IG(σ2|αn−1, βn−1). (35)

The induction step consists then in verifying whether (35) is
valid for n. For this purpose, we substitute (34)-(35) into (31),
obtaining that

p(Sn, yn, σ2|S0:n−1, y0:n−1) = p(Sn|S0:n−1)

×N (yn|ĥ
H
n|n−1Sn, σ2γn)IG(σ2|αn−1, βn−1). (36)

Algebraic manipulations similar to those of (23) now lead to

p(Sn, yn, σ2|S0:n−1, y0:n−1) = p(Sn|S0:n−1)[
β

αn−1

n−1 Γ(αn)
]
/ [βαn

n Γ(αn−1)πγn] IG(σ2|αn, βn). (37)

Substituting (37) in (29) finally results that

p(σ2|S0:n, y0:n) = IG(σ2|αn, βn). (38)

As (35)-(38) are valid for n ≥ 0, the principle of finite induc-
tion confirms (19)-(20).
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